Multi-labeled Graph Matching - An algorithm Model for Schema Matching

Schema matching is the task of finding semantic correspondences between elements of two schemas, which plays a key role in many database applications. In this paper, we treat the schema matching problem as a combinatorial problem. First, we propose an internal schema model, i.e., the multilabeled graph, and transform schemas into multi-labeled graphs. Secondly, we discuss a generic graph similarity measure, and propose an optimization function based on multi-labeled graph similarity. Then, we cast schema matching problem into a multi-labeled graph matching problem, which is a classic combinational problem. Finally, we implement a greedy algorithm to find the feasible matching results.

[1]  Fausto Giunchiglia,et al.  S-Match: an Algorithm and an Implementation of Semantic Matching , 2004, ESWS.

[2]  Luc Lamontagne,et al.  Case-Based Reasoning Research and Development , 1997, Lecture Notes in Computer Science.

[3]  Patrick Brézillon,et al.  Modeling and Using Context , 1999, Lecture Notes in Computer Science.

[4]  Sergey Melnik,et al.  Generic Model Management: Concepts And Algorithms (Lecture Notes in Computer Science) , 2004 .

[5]  Pierre-Antoine Champin,et al.  Measuring the Similarity of Labeled Graphs , 2003, ICCBR.

[6]  Erhard Rahm,et al.  Web, Web-Services, and Database Systems , 2003, Lecture Notes in Computer Science.

[7]  Sergey Melnik,et al.  Generic Model Management , 2004, Lecture Notes in Computer Science.

[8]  Sergey Melnik,et al.  Generic Model Management , 2004, Lecture Notes in Computer Science.

[9]  Erhard Rahm,et al.  Similarity flooding: a versatile graph matching algorithm and its application to schema matching , 2002, Proceedings 18th International Conference on Data Engineering.

[10]  Erhard Rahm,et al.  Comparison of Schema Matching Evaluations , 2002, Web, Web-Services, and Database Systems.

[11]  Erhard Rahm,et al.  A survey of approaches to automatic schema matching , 2001, The VLDB Journal.

[12]  Pedro M. Domingos,et al.  Learning to Match the Schemas of Data Sources: A Multistrategy Approach , 2003, Machine Learning.

[13]  Laura M. Haas,et al.  Schema Mapping as Query Discovery , 2000, VLDB.

[14]  Meng Li,et al.  Stream Operators for Querying Data Streams , 2005, WAIM.

[15]  Erhard Rahm,et al.  On Matching Schemas Automatically , 2001 .

[16]  Pradeep Ravikumar,et al.  A Comparison of String Distance Metrics for Name-Matching Tasks , 2003, IIWeb.

[17]  Erhard Rahm,et al.  COMA - A System for Flexible Combination of Schema Matching Approaches , 2002, VLDB.

[18]  Luciano Serafini,et al.  A SAT-Based Algorithm for Context Matching , 2003, CONTEXT.

[19]  Ted Pedersen,et al.  WordNet::Similarity - Measuring the Relatedness of Concepts , 2004, NAACL.

[20]  Amihai Motro,et al.  Autoplex: Automated Discovery of Content for Virtual Databases , 2001, CoopIS.

[21]  Erhard Rahm,et al.  Generic Schema Matching with Cupid , 2001, VLDB.

[22]  Christine Solnon,et al.  Reactive Tabu Search for Measuring Graph Similarity , 2005, GbRPR.