Structural, Optical, and Electrical Characterization of 643 nm Red InGaN Multiquantum Wells Grown on Strain‐Relaxed InGaN Templates

Red‐emitting (≈643 nm) InGaN multiquantum well active device layers and micro‐LEDs are grown by metal organic chemical vapor deposition (MOCVD) on relaxed InGaN templates, the latter created via thermal decomposition of an InGaN underlayer, and examined via power‐ and temperature‐dependent photoluminescence and electrical measurements. Maximum internal quantum efficiencies are determined to be 7.5% at an excitation power density of 13 W cm−2, radiative recombination occurs through monomolecular recombination, and the fabricated micro‐LEDs do not show any efficiency degradation with decreasing size. Peak on‐wafer external quantum efficiency (EQE) of a 5 × 5 μm2 device is 0.44%, demonstrating that thermally decomposed InGaN “strain‐relaxing” underlayers may be useful for long wavelength micro‐LED applications.

[1]  Lai Wang,et al.  Invalidation of the acquisition of internal quantum efficiency using temperature-dependent photoluminescence in InGaN quantum wells with high threading dislocation density , 2022, Journal of Physics D: Applied Physics.

[2]  D. Menzel,et al.  Low-temperature internal quantum efficiency of GaInN/GaN quantum wells under steady-state conditions , 2022, Semiconductor Science and Technology.

[3]  S. Denbaars,et al.  Demonstration of relaxed InGaN-based red LEDs grown with high active region temperature , 2021, Applied Physics Express.

[4]  S. Denbaars,et al.  Growth of highly relaxed InGaN pseudo-substrates over full 2-in. wafers , 2021, Applied Physics Letters.

[5]  S. Denbaars,et al.  Size-independent peak external quantum efficiency (>2%) of InGaN red micro-light-emitting diodes with an emission wavelength over 600 nm , 2021, Applied Physics Letters.

[6]  N. Rochat,et al.  Investigation of sidewall damage induced by reactive ion etching on AlGaInP MESA for micro-LED application , 2021 .

[7]  Shengjun Zhou,et al.  Rational construction of staggered InGaN quantum wells for efficient yellow light-emitting diodes , 2021 .

[8]  J. Carlin,et al.  Imaging Nonradiative Point Defects Buried in Quantum Wells Using Cathodoluminescence. , 2021, Nano letters.

[9]  M. Albrecht,et al.  Role of Metal Vacancies in the Mechanism of Thermal Degradation of InGaN Quantum Wells. , 2021, ACS applied materials & interfaces.

[10]  D. Vaufrey,et al.  Full InGaN red (625 nm) micro-LED (10 μm) demonstration on a relaxed pseudo-substrate , 2021 .

[11]  Ryan T. Ley,et al.  Demonstration of ultra-small ( 0.2%) for mini-displays , 2021 .

[12]  Chi-Wai Chow,et al.  Micro-LED as a Promising Candidate for High-Speed Visible Light Communication , 2020, Applied Sciences.

[13]  Nazeer Muhammad,et al.  Green gap in GaN-based light-emitting diodes: in perspective , 2020, Critical Reviews in Solid State and Materials Sciences.

[14]  Ryan T. Ley,et al.  Revealing the importance of light extraction efficiency in InGaN/GaN microLEDs via chemical treatment and dielectric passivation , 2020 .

[15]  Jing Yu Lin,et al.  Development of microLED , 2020 .

[16]  Ryan T. Ley,et al.  Comparison of size-dependent characteristics of blue and green InGaN microLEDs down to 1 μm in diameter , 2020 .

[17]  S. Denbaars,et al.  Compliant Micron-Sized Patterned InGaN Pseudo-Substrates Utilizing Porous GaN , 2020, Materials.

[18]  N. El-Masry,et al.  Growth and characterization of In Ga1−N (0 < x < 0.16) templates for controlled emissions from MQW , 2019, Journal of Crystal Growth.

[19]  Bong Hoon Kim,et al.  A Wireless Closed Loop System for Optogenetic Peripheral Neuromodulation , 2018, Nature.

[20]  Hao-Chung Kuo,et al.  Mini-LED and Micro-LED: Promising Candidates for the Next Generation Display Technology , 2018, Applied Sciences.

[21]  Chengqun Gui,et al.  The effect of nanometre-scale V-pits on electronic and optical properties and efficiency droop of GaN-based green light-emitting diodes , 2018, Scientific Reports.

[22]  H. Amano,et al.  Role of threading dislocations in strain relaxation during GaInN growth monitored by real-time X-ray reflectivity , 2017 .

[23]  F. Jiang,et al.  Hole injection from the sidewall of V-shaped pits into c-plane multiple quantum wells in InGaN light emitting diodes , 2015 .

[24]  N. El-Masry,et al.  Growth and Characterization of High-Quality, Relaxed InyGa1−yN Templates for Optoelectronic Applications , 2015, Journal of Electronic Materials.

[25]  Zhijue Quan,et al.  Electroluminescence from the sidewall quantum wells in the V-shaped pits of InGaN light emitting diodes , 2014 .

[26]  Michael Kneissl,et al.  Indium incorporation and emission wavelength of polar, nonpolar and semipolar InGaN quantum wells , 2012 .

[27]  Zhibiao Hao,et al.  Theoretical study on critical thicknesses of InGaN grown on (0 0 0 1) GaN , 2011 .

[28]  M. Kneissl,et al.  Temperature and excitation power dependent photoluminescence intensity of GaInN quantum wells with varying charge carrier wave function overlap , 2010 .

[29]  Michael Kneissl,et al.  The critical thickness of InGaN on (0 0 0 1)GaN , 2008 .

[30]  T. Egawa,et al.  Highly efficient GaN-based light emitting diodes with micropits , 2006 .

[31]  M. Bosi,et al.  A study of Indium incorporation efficiency in InGaN grown by MOVPE , 2004 .

[32]  Martin D. Dawson,et al.  Mechanism of enhanced light output efficiency in InGaN-based microlight emitting diodes , 2003 .

[33]  Ian Watson,et al.  Strain and composition distributions in wurtzite InGaN/GaN layers extracted from x-ray reciprocal space mapping , 2002 .

[34]  Eli Yablonovitch,et al.  Surface Recombination Measurements on III-V Candidate Materials for Nanostructure Light-Emitting Diodes , 2000 .

[35]  Pierre Gibart,et al.  TEMPERATURE QUENCHING OF PHOTOLUMINESCENCE INTENSITIES IN UNDOPED AND DOPED GAN , 1999 .

[36]  Jörg Neugebauer,et al.  Surface energetics, pit formation, and chemical ordering in InGaN alloys , 1999 .

[37]  S. Nakamura,et al.  Spontaneous emission of localized excitons in InGaN single and multiquantum well structures , 1996 .