Carbon arc production of heptagon-containing fullerene[68]

A carbon heptagon ring is a key unit responsible for structural defects in sp2-hybrized carbon allotropes including fullerenes, carbon nanotubes and graphenes, with consequential influences on their mechanical, electronic and magnetic properties. Previous evidence concerning the existence of heptagons in fullerenes has been obtained only in off-line halogenation experiments through top-down detachment of a C2 unit from a stable fullerene. Here we report a heptagon-incorporating fullerene C68, tentatively named as heptafullerene[68], which is captured as C68Cl6 from a carbon arc plasma in situ. The occurrence of heptagons in fullerenes is rationalized by heptagon-related strain relief and temperature-dependent stability. 13C-labelled experiments and mass/energy conservation equation simulations show that heptafullerene[68] grows together with other fullerenes in a bottom-up fashion in the arc zone. This work extends fullerene research into numerous topologically possible, heptagon-incorporating isomers and provides clues to an understanding of the heptagon-involved growth mechanism and heptagon-dependent properties of fullerenes.

[1]  Klaus Kern,et al.  Atomic structure of reduced graphene oxide. , 2010, Nano letters.

[2]  F. D. Juan,et al.  Magnetic moments in the presence of topological defects in graphene , 2008, 0806.3000.

[3]  Walter Thiel,et al.  How Does Helium Get into Buckminsterfullerene , 1996 .

[4]  Vivek B Shenoy,et al.  Anomalous Strength Characteristics of Tilt Grain Boundaries in Graphene , 2010, Science.

[5]  D. Bethune,et al.  NMR Determination of the Bond Lengths in C60. , 1991 .

[6]  Katsumi Kaneko,et al.  Evidence of dynamic pentagon-heptagon pairs in single-wall carbon nanotubes using surface-enhanced Raman scattering. , 2010, Journal of the American Chemical Society.

[7]  Charles M. Lieber,et al.  Atomically resolved single-walled carbon nanotube intramolecular junctions. , 2001, Science.

[8]  Shigeru Nagase,et al.  Endofullerenes : a new family of carbon clusters , 2002 .

[9]  J. Yergey A GENERAL APPROACH TO CALCULATING ISOTOPIC DISTRIBUTIONS FOR MASS SPECTROMETRY. , 1983, Journal of mass spectrometry : JMS.

[10]  J. Charlier,et al.  Defects in carbon nanotubes. , 2002, Accounts of chemical research.

[11]  Zdeněk Slaninaj,et al.  Equilibrium isomeric mixtures: potential energy hypersurfaces as the origin of the overall thermodynamics and kinetics , 1987 .

[12]  E. C. Franklin A New Era in Chemistry , 1914 .

[13]  S. C. O'brien,et al.  C60: Buckminsterfullerene , 1985, Nature.

[14]  D. Manolopoulos,et al.  An Atlas of Fullerenes , 1995 .

[15]  Angel Rubio,et al.  Improved Charge Transfer at Carbon Nanotube Electrodes , 1999 .

[16]  John Aurie Dean,et al.  Lange's Handbook of Chemistry , 1978 .

[17]  W. Cai,et al.  Electronic structures, stabilities, and spectroscopies of the fullerene derivatives C68X4 (X = H, F, Cl) , 2010 .

[18]  Chuanbao Chen,et al.  Chlorination of C86 to C84Cl32 with nonclassical heptagon-containing fullerene cage formed by cage shrinkage. , 2010, Angewandte Chemie.

[19]  S. Louie,et al.  Electronic transport in polycrystalline graphene. , 2010, Nature materials.

[20]  L. Gan,et al.  Geometrical and electronic rules in fullerene-based compounds. , 2011, Chemistry, an Asian journal.

[21]  J. Callahan,et al.  Molecular Dynamics Simulations and Experimental Studies of the Formation of Endohedral Complexes of Buckminsterfullerene , 1992 .

[22]  Li-Hua Gan,et al.  Nonclassical fullerenes with a heptagon violating the pentagon adjacency penalty rule , 2010, J. Comput. Chem..

[23]  F. J. Norton,et al.  Carbon Vapor Pressure and Heat of Vaporization , 1950 .

[24]  Georgios C Vougioukalakis,et al.  Open-cage fullerenes: towards the construction of nanosized molecular containers. , 2010, Chemical Society reviews.

[25]  G. Sheldrick A short history of SHELX. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[26]  Clark R. Landis,et al.  Valency and Bonding: A Natural Bond Orbital Donor-Acceptor Perspective , 2005 .

[27]  H. C. Jones A New Era in Chemistry , 2010 .

[28]  Feng Zhu,et al.  Chlorofullerenes featuring triple sequentially fused pentagons. , 2010, Nature chemistry.

[29]  J. Hawkins,et al.  Statistical incorporation of carbon-13 13C2 units into C60 (buckminsterfullerene) , 1991 .

[30]  B. Delley An all‐electron numerical method for solving the local density functional for polyatomic molecules , 1990 .

[31]  Yuan‐Zhi Tan,et al.  The stabilization of fused-pentagon fullerene molecules. , 2009, Nature chemistry.

[32]  L. Gan,et al.  Structures and stability of the hydrides of C32, C34 and C36 , 2008 .

[33]  Linus Pauling,et al.  The Dependence of Interatomic Distance on Single Bond-Double Bond Resonance1 , 1935 .

[34]  L. Kempers A thermodynamic theory of the Soret effect in a multicomponent liquid , 1989 .

[35]  Robert C. Haddon,et al.  .pi.-Electrons in three dimensiona , 1988 .

[36]  Roger Taylor,et al.  Isolation of Two Seven-Membered Ring C58 Fullerene Derivatives: C58F17CF3 and C58F18 , 2005, Science.

[37]  T. Ebbesen,et al.  The mechanistics of fullerene formation , 1992 .

[38]  Y. Murata,et al.  Encapsulation of Molecular Hydrogen in Fullerene C60 by Organic Synthesis , 2005, Science.

[39]  Gustavo E. Scuseria,et al.  Why are buckyonions round? , 1998 .

[40]  S. Iijima,et al.  Imaging active topological defects in carbon nanotubes. , 2007, Nature nanotechnology.

[41]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[42]  You Lin,et al.  An extended defect in graphene as a metallic wire. , 2010, Nature nanotechnology.

[43]  M. Jansen,et al.  C80Cl12: a chlorine derivative of the chiral D2-C80 isomer--empirical rationale of halogen-atom addition pattern. , 2009, Chemistry.

[44]  J. Ihm,et al.  Stability of dislocation defect with two pentagon-heptagon pairs in graphene , 2008 .

[45]  Pablo Ordejón,et al.  Fullerene growth and the role of nonclassical isomers , 2001 .

[46]  S. Iijima,et al.  Direct evidence for atomic defects in graphene layers , 2004, Nature.

[47]  Clark R. Landis,et al.  NATURAL BOND ORBITALS AND EXTENSIONS OF LOCALIZED BONDING CONCEPTS , 2001 .

[48]  Hui‐Ming Cheng,et al.  Synthesis of graphene sheets with high electrical conductivity and good thermal stability by hydrogen arc discharge exfoliation. , 2009, ACS nano.

[49]  D. Lenoir,et al.  Chloroaromatic formation in incineration processes. , 2001, The Science of the total environment.

[50]  L. Gan,et al.  Preparation of Open‐Cage Fullerenes and Incorporation of Small Molecules Through Their Orifices , 2010, Advanced materials.

[51]  Ji-Kang Feng,et al.  Structures, stabilities, and electronic and optical properties of c(58) fullerene isomers, ions, and metallofullerenes. , 2007, Chemphyschem : a European journal of chemical physics and physical chemistry.

[52]  J. Bohr,et al.  C60 a new form of carbon , 1992 .

[53]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[54]  H. W. Kroto,et al.  The stability of the fullerenes Cn, with n = 24, 28, 32, 36, 50, 60 and 70 , 1987, Nature.

[55]  Martin Saunders,et al.  Incorporation of helium, neon, argon, krypton, and xenon into fullerenes using high pressure , 1994 .

[56]  Yoshinori Ando,et al.  Pentagons, heptagons and negative curvature in graphite microtubule growth , 1992, Nature.

[57]  S. Saxena,et al.  Measurement of the thermal conductivity of helium using a hot-wire type of thermal diffusion column , 1968 .

[58]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[59]  P. Fowler,et al.  C62: Theoretical Evidence for a Nonclassical Fullerene with a Heptagonal Ring , 1996 .

[60]  B. Sumpter,et al.  Spin polarized conductance in hybrid graphene nanoribbons using 5-7 defects. , 2009, ACS nano.

[61]  Roger G. Taylor,et al.  The Third Form of Carbon A New Era in Chemistry , 1992 .

[62]  D. Huffman,et al.  Solid C60: A New Form of Carbon. , 1991 .

[63]  L. Gan,et al.  A global search for the lowest energy isomer of C(26). , 2010, The Journal of chemical physics.

[64]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[65]  F. Gao,et al.  Significant promotional effect of CCl4 on fullerene yield in the graphite arc-discharge reaction. , 2003, Chemical communications.

[66]  D. Whittaker,et al.  Axial temperature distributions along thin graphite electrodes , 1972 .

[67]  Patrick W. Fowler,et al.  C62: Theoretical Evidence for a Nonclassical Fullerene with a Heptagonal Ring , 1996 .