State of the art of quantum cascade photodetectors

The Quantum Cascade Detector (QCD) is a multiple quantum well photodetector working at low bias or zero bias. It has a zero dark current occurring at 0V, together with a high photovoltaic photoresponse, since the QCD does not need any applied field to improve the collection of electrons. QCDs have been tested at various wavelengths, from short wavelengths (1.5 microns) up to THz waves, through the entire infrared spectrum (middle and long wavelengths). Theory of transport in QCD is now well established, and leads to accurate calculations of current and noise in QCDs, with a very good agreement with experimental results. Latest results and state of the art of performances of QCDs are presented.

[1]  Mathieu Carras,et al.  Role of subband occupancy on electronic transport in quantum cascade detectors , 2010 .

[2]  F. Julien,et al.  Near infrared quantum cascade detector in GaN∕AlGaN∕AlN heterostructures , 2008 .

[3]  F. Stern,et al.  Electronic properties of two-dimensional systems , 1982 .

[4]  J. Faist,et al.  Short wavelength (4μm) quantum cascade detector based on strain compensated InGaAs∕InAlAs , 2008 .

[5]  Deborah L. Sivco,et al.  Mid‐infrared detectors in the 3–5 μm band using bound to continuum state absorption in InGaAs/InAlAs multiquantum well structures , 1990 .

[6]  Zhiping Jiang,et al.  Electro-optic measurement of THz field pulses with a chirped optical beam , 1998 .

[7]  C. Manz,et al.  InGaAs∕AlAsSb quantum cascade detectors operating in the near infrared , 2007 .

[8]  V. Berger,et al.  High resistance narrow band quantum cascade photodetectors , 2005 .

[9]  Eric Costard,et al.  QWIP compact thermal imager: Catherine-XP and its evolution , 2007, SPIE Defense + Commercial Sensing.

[10]  M. Carras,et al.  Quantum cascade photodetector , 2004 .

[11]  Frank Fuchs,et al.  Photovoltaic intersubband detectors for 3-5 mu m using GaAs quantum wells sandwiched between AlAs tunnel barriers , 1991 .

[12]  J. Faist,et al.  16.5μm quantum cascade detector using miniband transport , 2007 .

[13]  H. Liu,et al.  Terahertz quantum-well photodetector , 2004 .

[14]  Hui Chun Liu,et al.  Dependence of absorption spectrum and responsivity on the upper state position in quantum well intersubband photodetectors , 1993 .

[15]  Frank Fuchs,et al.  Transport asymmetry and photovoltaic response in (AlGa)As/AlAs/GaAs/(AlGa)As single‐barrier quantum‐well infrared detectors , 1992 .

[16]  Interface roughness transport in terahertz quantum cascade detectors , 2009, 0910.5356.

[17]  E. Linfield,et al.  Terahertz range quantum well infrared photodetector , 2004 .

[18]  D. T. Hodges,et al.  Extension of the Schottky barrier detector to 70 μm (4.3 THz) using submicron‐dimensional contacts , 1977 .

[19]  L. C. West,et al.  First observation of an extremely large‐dipole infrared transition within the conduction band of a GaAs quantum well , 1985 .

[20]  J. Faist,et al.  InP-based quantum cascade detectors in the mid-infrared , 2006 .

[21]  C. Manz,et al.  Midinfrared quantum cascade detector with a spectrally broad response , 2008 .

[23]  V. Berger,et al.  Electronic transport in quantum cascade structures at equilibrium , 2006 .

[24]  M. Buchanan,et al.  Cutoff tailorability of heterojunction terahertz detectors , 2003 .

[25]  V. Berger,et al.  Quantum cascade detectors , 2005 .

[26]  E. Costard,et al.  Enhanced quantum well infrared photodetector focal plane arrays for space applications , 2009 .

[27]  Kwong-Kit Choi,et al.  New 10 μm infrared detector using intersubband absorption in resonant tunneling GaAlAs superlattices , 1987 .

[28]  H. Schneider,et al.  Optimized performance of quantum well intersubband infrared detectors: Photovoltaic versus photoconductive operation , 1993 .