Global convergece of the bfgs algorithm with nonmonotone linesearch ∗ ∗this work is supported by national natural science foundation$ef:
暂无分享,去创建一个
Defeng Sun | Jiye Han | Defeng Sun | Jiye Han | G. Liu | G. Liu
[1] James M. Ortega,et al. Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.
[2] Luigi Grippo,et al. Stopping criteria for linesearch methods without derivatives , 1984, Math. Program..
[3] L. Armijo. Minimization of functions having Lipschitz continuous first partial derivatives. , 1966 .
[4] J. F. Price,et al. An effective algorithm for minimization , 1967 .
[5] J. Han. GENERAL FORM OF STEPSIZE SELECTION RULES OF LINESEARCH AND RELEVANT ANALYSIS OF GLOBAL CONVERGENCE OF BFGS ALGOMTHM , 1995 .
[6] Nonmonotone conjugate gradient methods for optimization , 1993, System Modelling and Optimization.
[7] J. D. Pearson. ON VARIABLE METRIC METHODS OF MINIMIZATION , 1968 .
[8] J. Werner. Über die globale Konvergenz von Variable-Metrik-Verfahren mit nicht-exakter Schrittweitenbestimmung , 1978 .
[9] Nada I. Djuranović-Miličić. On a modification of a step-size algorithm , 1987 .
[10] L. Grippo,et al. A nonmonotone line search technique for Newton's method , 1986 .
[11] J. Nocedal,et al. A tool for the analysis of Quasi-Newton methods with application to unconstrained minimization , 1989 .
[12] J. D. Pearson. Variable metric methods of minimisation , 1969, Comput. J..
[13] P. Wolfe. Convergence Conditions for Ascent Methods. II , 1969 .