Multiple testing for neuroimaging via hidden Markov random field

Traditional voxel‐level multiple testing procedures in neuroimaging, mostly p‐value based, often ignore the spatial correlations among neighboring voxels and thus suffer from substantial loss of power. We extend the local‐significance‐index based procedure originally developed for the hidden Markov chain models, which aims to minimize the false nondiscovery rate subject to a constraint on the false discovery rate, to three‐dimensional neuroimaging data using a hidden Markov random field model. A generalized expectation–maximization algorithm for maximizing the penalized likelihood is proposed for estimating the model parameters. Extensive simulations show that the proposed approach is more powerful than conventional false discovery rate procedures. We apply the method to the comparison between mild cognitive impairment, a disease status with increased risk of developing Alzheimer's or another dementia, and normal controls in the FDG‐PET imaging study of the Alzheimer's Disease Neuroimaging Initiative.

[1]  Welch Bl THE GENERALIZATION OF ‘STUDENT'S’ PROBLEM WHEN SEVERAL DIFFERENT POPULATION VARLANCES ARE INVOLVED , 1947 .

[2]  J. Besag Spatial Interaction and the Statistical Analysis of Lattice Systems , 1974 .

[3]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[4]  D. Benson,et al.  The fluorodeoxyglucose 18F scan in Alzheimer's disease and multi-infarct dementia. , 1983, Archives of neurology.

[5]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  Begnaud Francis Hildebrand,et al.  Introduction to numerical analysis: 2nd edition , 1987 .

[7]  D. Chandler,et al.  Introduction To Modern Statistical Mechanics , 1987 .

[8]  Bernard Chalmond,et al.  An iterative Gibbsian technique for reconstruction of m-ary images , 1989, Pattern Recognit..

[9]  C. Geyer,et al.  Constrained Monte Carlo Maximum Likelihood for Dependent Data , 1992 .

[10]  Jun Zhang The mean field theory in EM procedures for Markov random fields , 1992, IEEE Trans. Signal Process..

[11]  Adrian F. M. Smith,et al.  Simple conditions for the convergence of the Gibbs sampler and Metropolis-Hastings algorithms , 1994 .

[12]  R. Koeppe,et al.  A diagnostic approach in Alzheimer's disease using three-dimensional stereotactic surface projections of fluorine-18-FDG PET. , 1995, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[13]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[14]  S. Zeger,et al.  A Smooth Nonparametric Estimate of a Mixing Distribution Using Mixtures of Gaussians , 1996 .

[15]  A. Ridolfi Maximum Likelihood Estimation of Hidden Markov Model Parameters, with Application to Medical Image Segmentation , 1997 .

[16]  J. Booth,et al.  Maximizing generalized linear mixed model likelihoods with an automated Monte Carlo EM algorithm , 1999 .

[17]  Y. Benjamini,et al.  Resampling-based false discovery rate controlling multiple test procedures for correlated test statistics , 1999 .

[18]  L. Garey Brodmann's localisation in the cerebral cortex , 1999 .

[19]  Y. Benjamini,et al.  On the Adaptive Control of the False Discovery Rate in Multiple Testing With Independent Statistics , 2000 .

[20]  John Odentrantz,et al.  Markov Chains: Gibbs Fields, Monte Carlo Simulation, and Queues , 2000, Technometrics.

[21]  Y. Benjamini,et al.  THE CONTROL OF THE FALSE DISCOVERY RATE IN MULTIPLE TESTING UNDER DEPENDENCY , 2001 .

[22]  J. Stoer,et al.  Introduction to Numerical Analysis , 2002 .

[23]  Gerhard Winkler,et al.  Image Analysis, Random Fields and Markov Chain Monte Carlo Methods: A Mathematical Introduction , 2002 .

[24]  K. Ishii Clinical application of positron emission tomography for diagnosis of dementia , 2002, Annals of nuclear medicine.

[25]  G. Alexander,et al.  Longitudinal PET Evaluation of Cerebral Metabolic Decline in Dementia: A Potential Outcome Measure in Alzheimer's Disease Treatment Studies. , 2002, The American journal of psychiatry.

[26]  L. Wasserman,et al.  Operating characteristics and extensions of the false discovery rate procedure , 2002 .

[27]  Thomas E. Nichols,et al.  Thresholding of Statistical Maps in Functional Neuroimaging Using the False Discovery Rate , 2002, NeuroImage.

[28]  B. Efron Large-Scale Simultaneous Hypothesis Testing , 2004 .

[29]  J. Idier,et al.  Penalized Maximum Likelihood Estimator for Normal Mixtures , 2000 .

[30]  Edgar Arce Santana,et al.  Hidden Markov Measure Field Models for Image Segmentation , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[31]  Thomas E. Nichols,et al.  Controlling the familywise error rate in functional neuroimaging: a comparative review , 2003, Statistical methods in medical research.

[32]  J. Hodges,et al.  Limbic hypometabolism in Alzheimer's disease and mild cognitive impairment , 2003, Annals of neurology.

[33]  John D. Storey The positive false discovery rate: a Bayesian interpretation and the q-value , 2003 .

[34]  L. Wasserman,et al.  A stochastic process approach to false discovery control , 2004, math/0406519.

[35]  L. Mosconi,et al.  Brain glucose metabolism in the early and specific diagnosis of Alzheimer’s disease , 2005, European Journal of Nuclear Medicine and Molecular Imaging.

[36]  J. S. Lee,et al.  18F-FDG PET findings in frontotemporal dementia: an SPM analysis of 29 patients. , 2005, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[37]  A. Convit,et al.  Reduced hippocampal metabolism in MCI and AD , 2005, Neurology.

[38]  L. Wasserman,et al.  False discovery control with p-value weighting , 2006 .

[39]  Kathryn Ziegler-Graham,et al.  Forecasting the global burden of Alzheimer’s disease , 2007, Alzheimer's & Dementia.

[40]  A. Farcomeni Some Results on the Control of the False Discovery Rate under Dependence , 2007 .

[41]  Hongtu Zhu,et al.  Maximum likelihood from spatial random effects models via the stochastic approximation expectation maximization algorithm , 2007, Stat. Comput..

[42]  A. Drzezga,et al.  Gender differences in brain reserve : an (18)F-FDG PET study in Alzheimer's disease. , 2007, Journal of neurology.

[43]  Y. Benjamini,et al.  False Discovery Rates for Spatial Signals , 2007 .

[44]  Wenguang Sun,et al.  Oracle and Adaptive Compound Decision Rules for False Discovery Rate Control , 2007 .

[45]  R. Little,et al.  QUANTITATIVE MAGNETIC RESONANCE IMAGE ANALYSIS VIA THE EM ALGORITHM WITH STOCHASTIC VARIATION. , 2008, The annals of applied statistics.

[46]  Jiahua Chen,et al.  INFERENCE FOR NORMAL MIXTURES IN MEAN AND VARIANCE , 2008 .

[47]  W. Wu,et al.  On false discovery control under dependence , 2008, 0803.1971.

[48]  E. Reiman,et al.  Multicenter Standardized 18F-FDG PET Diagnosis of Mild Cognitive Impairment, Alzheimer's Disease, and Other Dementias , 2008, Journal of Nuclear Medicine.

[49]  M. Newton Large-Scale Simultaneous Hypothesis Testing: The Choice of a Null Hypothesis , 2008 .

[50]  et al.,et al.  Categorical and correlational analyses of baseline fluorodeoxyglucose positron emission tomography images from the Alzheimer's Disease Neuroimaging Initiative (ADNI) , 2009, NeuroImage.

[51]  E. Duchesnay,et al.  Longitudinal brain metabolic changes from amnestic Mild Cognitive Impairment to Alzheimer's disease , 2009, NeuroImage.

[52]  Wenguang Sun,et al.  Large‐scale multiple testing under dependence , 2009 .

[53]  Peter D. Hoff,et al.  A First Course in Bayesian Statistical Methods , 2009 .

[54]  Karl J. Friston,et al.  False discovery rate revisited: FDR and topological inference using Gaussian random fields , 2009, NeuroImage.

[55]  Kai Wang,et al.  Multiple testing in genome-wide association studies via hidden Markov models , 2009, Bioinform..

[56]  Wenguang Sun,et al.  Simultaneous Testing of Grouped Hypotheses: Finding Needles in Multiple Haystacks , 2009 .

[57]  Karl J. Friston,et al.  Topological FDR for neuroimaging , 2010, NeuroImage.

[58]  Hongzhe Li,et al.  A hidden Markov random field model for genome-wide association studies. , 2010, Biostatistics.

[59]  A. Dale,et al.  Relative capability of MR imaging and FDG PET to depict changes associated with prodromal and early Alzheimer disease. , 2010, Radiology.

[60]  Cindee M. Madison,et al.  Associations between cognitive, functional, and FDG-PET measures of decline in AD and MCI , 2011, Neurobiology of Aging.

[61]  Tao Yu,et al.  MULTIPLE TESTING VIA FDRL FOR LARGE SCALE IMAGING DATA , 2011, 1103.1966.

[62]  Tao Yu,et al.  MULTIPLE TESTING VIA FDRL FOR LARGE SCALE IMAGING DATA , 2011 .

[63]  Merissa N. Zeman,et al.  Diagnosis of Dementia Using Nuclear Medicine Imaging Modalities , 2011 .

[64]  Daniel Rueckert,et al.  Multi-region analysis of longitudinal FDG-PET for the classification of Alzheimer's disease , 2012, NeuroImage.

[65]  Xuejing Wang,et al.  Regularized Functional Regression Models with Applications to Brain Imaging. , 2013 .

[66]  Thomas E. Nichols,et al.  A Bayesian non-parametric Potts model with application to pre-surgical FMRI data , 2013, Statistical methods in medical research.

[67]  B. Marcus,et al.  One-dimensional Markov random fields, Markov chains and topological Markov fields , 2011, 1112.4240.

[68]  Lei Huang,et al.  Bayesian scalar-on-image regression with application to association between intracranial DTI and cognitive outcomes , 2013, NeuroImage.

[69]  K. Ishii PET Approaches for Diagnosis of Dementia , 2014, American Journal of Neuroradiology.

[70]  Jiahua Chen,et al.  COMPOSITE LIKELIHOOD UNDER HIDDEN MARKOV MODEL , 2015 .