Merging the local and global approaches to probabilistic satisfiability

The probabilistic satisfiability problem is to verify the consistency of a set of probability values or intervals for logical propositions. The (tight) probabilistic entailment problem is to find best bounds on the probability of an additional proposition. The local approach to these problems applies rules on small sets of logical sentences and probabilities to tighten given probability intervals. The global approach uses linear programming to find best bounds. We show that merging these approaches is profitable to both: local solutions can be used to find global solutions more quickly through stabilized column generation, and global solutions can be used to confirm or refute the optimality of the local solutions found. As a result, best bounds are found, together with their step-by-step justification.

[1]  Susan A. Murphy,et al.  Monographs on statistics and applied probability , 1990 .

[2]  Peter Haddawy,et al.  Anytime Deduction for Probabilistic Logic , 1994, Artif. Intell..

[3]  Ernest W. Adams,et al.  On the uncertainties transmitted from premises to conclusions in deductive inferences , 1975, Synthese.

[4]  Helmut Thöne Precise conclusions under uncertainty and incompleteness in deductive database systems , 1994 .

[5]  M. Fréchet Sur les tableaux de correlation dont les marges sont donnees , 1951 .

[6]  Brigitte Jaumard,et al.  A Deductive Approach for Probabilistic Logic Problems , 1999 .

[7]  Benjamin N. Grosof,et al.  An inequality paradigm for probabilistic knowledge the augmented logic of conditional probability intervals , 1985, UAI 1985.

[8]  Pierre Hansen,et al.  Variable Neighborhood Search , 2018, Handbook of Heuristics.

[9]  Nils J. Nilsson,et al.  Probabilistic Logic * , 2022 .

[10]  Pierre Hansen,et al.  Algorithms for l 1 -Embeddability and Related Problems , 2003 .

[11]  Didier Dubois,et al.  Constraint Propagation with Imprecise Conditional Probabilities , 1991, UAI.

[12]  P. Walley,et al.  Direct algorithms for checking consistency and making inferences from conditional probability assessments , 2004 .

[13]  Silvio Ursic,et al.  Generalising fuzzy logic probabilistic inferences , 1986, UAI.

[14]  R. Gomory,et al.  A Linear Programming Approach to the Cutting-Stock Problem , 1961 .

[15]  Nils J. Nilsson,et al.  Probabilistic Logic Revisited , 1993, Artif. Intell..

[16]  Theodore Hailperin,et al.  Boole's logic and probability , 1976 .

[17]  Pierre Hansen,et al.  Constrained Nonlinear 0-1 Programming , 1989 .

[18]  S. Vajda,et al.  BOOLEAN METHODS IN OPERATIONS RESEARCH AND RELATED AREAS , 1969 .

[19]  Gai CarSO A Logic for Reasoning about Probabilities * , 2004 .

[20]  George Boole,et al.  An Investigation of the Laws of Thought: Frontmatter , 2009 .

[21]  Christos H. Papadimitriou,et al.  Probabilistic satisfiability , 1988, J. Complex..

[22]  Yuval Rabani,et al.  Linear Programming , 2007, Handbook of Approximation Algorithms and Metaheuristics.

[23]  Andrew P. Sage,et al.  Uncertainty in Artificial Intelligence , 1987, IEEE Transactions on Systems, Man, and Cybernetics.

[24]  Christos H. Papadimitriou,et al.  A linear programming approach to reasoning about probabilities , 1990, Annals of Mathematics and Artificial Intelligence.

[25]  Thomas Lukasiewicz,et al.  Probabilistic Deduction with Conditional Constraints over Basic Events , 2011, KR.

[26]  Pierre Hansen,et al.  Column Generation Methods for Probabilistic Logic , 1989, INFORMS J. Comput..

[27]  Benjamin N. Grosof An Inequality Paradigm for Probabilistic Knowledge: The Logic of Conditional Probability Intervals , 1985, UAI.

[28]  Didier Dubois,et al.  On fuzzy syllogisms , 1988, Comput. Intell..

[29]  Pierre Hansen,et al.  State-of-the-Art Survey - Constrained Nonlinear 0-1 Programming , 1993, INFORMS J. Comput..

[30]  Ralph E. Gomory,et al.  A Linear Programming Approach to the Cutting Stock Problem---Part II , 1963 .

[31]  L. V. Kantorovich,et al.  Mathematical Methods of Organizing and Planning Production , 1960 .

[32]  Brigitte Jaumard,et al.  An Anytime Deduction Algorithm for the Probabilistic Logic and Entailment Problems , 2006, NAFIPS 2006 - 2006 Annual Meeting of the North American Fuzzy Information Processing Society.

[33]  G. Boole An Investigation of the Laws of Thought: On which are founded the mathematical theories of logic and probabilities , 2007 .

[34]  Pierre Hansen,et al.  Stabilized column generation , 1998, Discret. Math..

[35]  Thomas Lukasiewicz,et al.  Local probabilistic deduction from taxonomic and probabilistic knowledge-bases over conjunctive events , 1999, Int. J. Approx. Reason..

[36]  Pierre Hansen,et al.  Probabilistic Satisfiability and Decomposition , 1994, ECSQARU.

[37]  B. D. Finetti La prévision : ses lois logiques, ses sources subjectives , 1937 .

[38]  Werner Kießling,et al.  On cautious probabilistic inference and default detachment , 1995, Ann. Oper. Res..

[39]  T. Hailperin,et al.  Best Possible Inequalities for the Probability of a Logical Function of Events , 1965 .

[40]  R. Scozzafava,et al.  Probabilistic Logic in a Coherent Setting , 2002 .

[41]  Alan Bundy,et al.  Symbolic and Quantitative Approaches to Reasoning and Uncertainty , 1993 .

[42]  Didier Dubois,et al.  Combination and Propagation of Uncertainty with Belief Functions - A Reexamination , 1985, IJCAI.

[43]  Jürg Kohlas,et al.  Algorithms for uncertainty and defeasible reasoning , 2000 .

[44]  Pierre Hansen,et al.  Boole's Conditions of Possible Experience and Reasoning under Uncertainty , 1992, Discret. Appl. Math..

[45]  P. Walley Statistical Reasoning with Imprecise Probabilities , 1990 .