Coding Scheme Based on Chaos Synchronization from Noninvertible Maps

This paper deals with a new coding scheme in digital implementation for secure communications. It is based on specific dynamic features generated by noninvertible maps. The main results are a global chaos synchronization, an exact synchronization without a residual error generated by the classical methods, a robustness with respect to channel disturbances. Chaos synchronization is obtained by introducting an observer model and the classical results of the control theory. Besides, this coding scheme introduces several "keys" required for decoding the initial information, which improves the security of communications.

[1]  Mira Christian,et al.  PLANE FOLIATION OF TWO-DIMENSIONAL NONINVERTIBLE MAPS , 1996 .

[2]  S. Mascolo,et al.  Nonlinear observer design to synchronize hyperchaotic systems via a scalar signal , 1997 .

[3]  L. Chua,et al.  A UNIFIED FRAMEWORK FOR SYNCHRONIZATION AND CONTROL OF DYNAMICAL SYSTEMS , 1994 .

[4]  Leon O. Chua,et al.  Chaos Synchronization in Chua's Circuit , 1993, J. Circuits Syst. Comput..

[5]  Chai Wah Wu,et al.  A Simple Way to Synchronize Chaotic Systems with Applications to , 1993 .

[6]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[7]  Leon O. Chua,et al.  ON ADAPTIVE SYNCHRONIZATION AND CONTROL OF NONLINEAR DYNAMICAL SYSTEMS , 1996 .

[8]  L. Chua,et al.  Synchronization in an array of linearly coupled dynamical systems , 1995 .

[9]  Leon O. Chua,et al.  Transmission of Digital signals by Chaotic Synchronization , 1992, Chua's Circuit.

[10]  Henk Nijmeijer,et al.  An observer looks at synchronization , 1997 .

[11]  Charles Tresser,et al.  Chaotic signal masking with arbitrarily fine recovery , 1997 .

[12]  G. Millerioux Chaotic Synchronization Conditions Based on Control Theory for Systems Described by Discrete Piecewise Linear Maps , 1997 .

[13]  A. Ushida,et al.  Quasi-synchronization phenomena in chaotic circuits coupled by one resistor , 1996 .

[14]  Alan V. Oppenheim,et al.  Circuit implementation of synchronized chaos with applications to communications. , 1993, Physical review letters.

[15]  Carroll,et al.  Driving systems with chaotic signals. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[16]  Louis M. Pecora,et al.  Synchronizing chaotic circuits , 1991 .