Facilitating Collaborative Ontology-Based Annotations in Communities of Interest

If an automated system is tasked to provide services such as search or clustering of information on an information repository, the quality of the output depends a lot on the information that is available to the system in machine-readable form. Simple text, for example, is machine-readable only in a very limited sense. Advanced services typically need to derive other representations of the text (e.g., sets of keywords) as input for their core algorithms. Some services might need information that cannot be derived from the resource in question alone, but is available as separate metadata only, such as usage information. Annotations can be used to carry this information. This thesis focuses on so-called ontology-based annotations. In contrast to other forms of annotations such as Tags (arbitrary strings that users can assign to resources), ontology-based annotations conform to a predefined data structure and class hierarchy. An advantage of this approach is that rich information can be stored in a well-structured way in the annotations; a drawback is that users need to be familiar with the hierarchy and other design decisions of the underlying ontology used for annotations. Two scenarios are considered in this thesis: First, a document-based scenario in which text annotations are used to represent both information about the text content and usage and user context information in a multi-user setting with mostly objective annotation criteria; second, a resource-based scenario whose annotation model focuses on multi-user settings with subjective annotation criteria, using (dis-)similarities in user annotations to derive user similarity metrics, and building personalized views from this information. Finally, the prototypical systems that have been developed throughout this thesis get evaluated, proving the concepts presented in this thesis.

[1]  Dan Brickley,et al.  FOAF Vocabulary Specification , 2004 .

[2]  Martin Memmel,et al.  Providing Multi Source Tag Recommendations in a Social Resource Sharing Platform , 2009, J. Univers. Comput. Sci..

[3]  Ansgar Bernardi,et al.  The NEPOMUK Semantic Desktop , 2011, Context and Semantics for Knowledge Management.

[4]  Malte Kiesel,et al.  DBTropes - a Linked Data Wrapper Approach Incorporating Community Feedback , 2010, EKAW.

[5]  Hui Wan,et al.  Personalized Tag Recommendations via Tagging and Content-based Similarity Metrics , 2007, ICWSM.

[6]  A. Dengel,et al.  Diplomarbeit Performant Trust and Similarity Metrics for Inconsistent Knowledge-bases , 2008 .

[7]  Grigory Begelman,et al.  Automated Tag Clustering: Improving search and exploration in the tag space , 2006 .

[8]  Lawrence Birnbaum,et al.  TagAssist: Automatic Tag Suggestion for Blog Posts , 2007, ICWSM.

[9]  Jessica Heesen,et al.  Possibilities and Limitations of Modeling Trust and Reputation , 2008, WSPI.

[10]  Pablo Castells,et al.  Multilayered Semantic Social Network Modeling by Ontology-Based User Profiles Clustering: Application to Collaborative Filtering , 2006, EKAW.

[11]  Guy Shani,et al.  Evaluating Recommendation Systems , 2011, Recommender Systems Handbook.

[12]  Giovanni Tummarello,et al.  Collaboratively Building Structured Knowledge with DBin: From del.icio.us Tags to an "RDFS Folksonomy" , 2007, CKC.

[13]  David R. Karger,et al.  Haystack: A Platform for Authoring End User Semantic Web Applications , 2003, WWW.

[14]  Sven Schwarz Context-Awareness and Context-Sensitive Interfaces for Knowledge Work Support , 2010 .

[15]  Panagiotis G. Ipeirotis,et al.  Automatic Extraction of Useful Facet Hierarchies from Text Databases , 2008, 2008 IEEE 24th International Conference on Data Engineering.

[16]  James Ze Wang,et al.  Image retrieval: Ideas, influences, and trends of the new age , 2008, CSUR.

[17]  David R. Karger,et al.  Piggy Bank: Experience the Semantic Web Inside Your Web Browser , 2005, International Semantic Web Conference.

[18]  Rajeev Motwani,et al.  The PageRank Citation Ranking : Bringing Order to the Web , 1999, WWW 1999.

[19]  Steve Cayzer,et al.  Learning User Profiles from Tagging Data and Leveraging them for Personal(ized) Information Access , 2007, WWW 2007.

[20]  Maik Thiele,et al.  Setting Goals and Choosing Metrics for Recommender System Evaluations , 2011 .

[21]  Jonathan L. Herlocker,et al.  Evaluating collaborative filtering recommender systems , 2004, TOIS.

[22]  Markus Krötzsch,et al.  Semantic MediaWiki , 2006, International Semantic Web Conference.

[23]  Stephen Marsh,et al.  Formalising Trust as a Computational Concept , 1994 .

[24]  M. Krötzsch,et al.  Wikipedia and the Semantic Web The Missing Links ? , 2005 .

[25]  Ueli Maurer,et al.  Modelling a Public-Key Infrastructure , 1996, ESORICS.

[26]  Xin Li,et al.  Tag-based social interest discovery , 2008, WWW.

[27]  Thomas Roth-Berghofer,et al.  Towards Goal Elicitation by User Observation , 2003 .

[28]  Siegfried Handschuh,et al.  P-TAG: large scale automatic generation of personalized annotation tags for the web , 2007, WWW '07.

[29]  David A. Forsyth,et al.  Matching Words and Pictures , 2003, J. Mach. Learn. Res..

[30]  D. Powers Evaluation: From Precision, Recall and F-Factor to ROC, Informedness, Markedness & Correlation , 2008 .

[31]  Enrico Motta,et al.  Personalizing relevance on the Semantic Web through trusted recommendations from a social network , 2006 .

[32]  A. Sheth,et al.  Information Brokering Across Heterogeneous Digital Data , 2000, Advances in Database Systems.

[33]  Eyal Oren,et al.  Semantic Wikis for Personal Knowledge Management , 2006, DEXA.

[34]  Jens Lehmann,et al.  What Have Innsbruck and Leipzig in Common? Extracting Semantics from Wiki Content , 2007, ESWC.

[35]  Kyu-Baek Hwang,et al.  A Weighting Scheme for Tag Recommendation in Social Bookmarking Systems , 2009, DC@PKDD/ECML.

[36]  Catherine Faron-Zucker,et al.  SweetWiki: A semantic wiki , 2008, J. Web Semant..

[37]  Andreas Dengel,et al.  iDocument: Using Ontologies for Extracting and Annotating Information from Unstructured Text , 2009, KI.

[38]  Georg Buscher,et al.  Attention-based information retrieval , 2007, SIGIR.

[39]  Icek Ajzen,et al.  From Intentions to Actions: A Theory of Planned Behavior , 1985 .

[40]  J. Fuhrmann Echo Chamber Rush Limbaugh And The Conservative Media Establishment , 2016 .

[41]  Andreas Dengel,et al.  Contextualized Knowledge Acquisition in a Personal Semantic Wiki , 2008, EKAW.

[42]  Michael Hausenblas,et al.  Building Linked Data For Both Humans and Machines , 2008, LDOW.

[43]  Jens Lehmann,et al.  DBpedia - A large-scale, multilingual knowledge base extracted from Wikipedia , 2015, Semantic Web.

[44]  Georg Lausen,et al.  Analyzing Correlation between Trust and User Similarity in Online Communities , 2004, iTrust.

[45]  Siegfried Handschuh,et al.  Creating ontology-based metadata by annotation for the semantic web , 2005 .

[46]  Yoav Shoham,et al.  Fab: content-based, collaborative recommendation , 1997, CACM.

[47]  Leo Sauermann,et al.  The Gnowsis semantic desktop approach to personal information management: weaving the personal semantic web , 2009 .

[48]  Andreas Hotho,et al.  BibSonomy: a social bookmark and publication sharing system , 2006 .

[49]  I. Ajzen,et al.  Belief, Attitude, Intention, and Behavior: An Introduction to Theory and Research , 1977 .

[50]  S. Wasserman,et al.  Social Network Analysis: Computer Programs , 1994 .

[51]  Christian Bizer,et al.  The RDF Book Mashup: From Web APIs to a Web of Data , 2007, SFSW.

[52]  Jianchang Mao,et al.  Towards the Semantic Web: Collaborative Tag Suggestions , 2006 .

[53]  Adam Pease,et al.  Towards a standard upper ontology , 2001, FOIS.

[54]  Andreas Hotho,et al.  Tag Recommendations in Folksonomies , 2007, LWA.

[55]  Christoph Trattner,et al.  Enhancing the navigability of social tagging systems with tag taxonomies , 2011, i-KNOW '11.

[56]  Jens Lehmann,et al.  DBpedia Live Extraction , 2009, OTM Conferences.

[57]  Eyal Oren,et al.  Sindice.com: a document-oriented lookup index for open linked data , 2008, Int. J. Metadata Semant. Ontologies.

[58]  Malte Kiesel Kaukolu: Hub of the Semantic Corporate Intranet , 2006, SemWiki.

[59]  Tom Heath,et al.  Open Data Commons, a License for Open Data , 2008, LDOW.

[60]  Félix Hernández-del-Olmo,et al.  Evaluation of recommender systems: A new approach , 2008, Expert Syst. Appl..

[61]  Paolo Avesani,et al.  Trust-Aware Collaborative Filtering for Recommender Systems , 2004, CoopIS/DOA/ODBASE.

[62]  Roelof van Zwol,et al.  Flickr tag recommendation based on collective knowledge , 2008, WWW.

[63]  Gilad Mishne,et al.  AutoTag: a collaborative approach to automated tag assignment for weblog posts , 2006, WWW '06.

[64]  Analía Amandi,et al.  Hybrid Content and Tag-based Profiles for Recommendation in Collaborative Tagging Systems , 2008, 2008 Latin American Web Conference.

[65]  Georg Buscher,et al.  Using Attention and Context Information for Annotations in a Semantic Wiki , 2008, SemWiki.

[66]  Sean Bechhofer,et al.  SKOS Simple Knowledge Organization System Reference , 2009 .

[67]  Jun Zhao,et al.  Describing Linked Datasets On the Design and Usage of voiD, the "Vocabulary Of Interlinked Datasets" , 2009 .

[68]  Martin Memmel,et al.  ALOE - A Socially Aware Learning Resource and Metadata Hub , 2007, EC-TEL.

[69]  Michael Sintek,et al.  RDFBroker: A Signature-Based High-Performance RDF Store , 2006, ESWC.

[70]  Zhiyuan Liu,et al.  Content-based and Graph-based Tag Suggestion , 2009, DC@PKDD/ECML.

[71]  Georg Buscher,et al.  Mymory: Enhancing a Semantic Wiki with Context Annotations , 2008, ESWC.

[72]  Michael J. Pazzani,et al.  A Framework for Collaborative, Content-Based and Demographic Filtering , 1999, Artificial Intelligence Review.

[73]  Valentin Robu,et al.  Emergence of consensus and shared vocabularies in collaborative tagging systems , 2009, TWEB.

[74]  Tim Berners-Lee,et al.  Linked Data - The Story So Far , 2009, Int. J. Semantic Web Inf. Syst..

[75]  Pattie Maes,et al.  Social information filtering: algorithms for automating “word of mouth” , 1995, CHI '95.

[76]  Enrico Motta,et al.  Revyu.com: a Reviewing and Rating Site for the Web of Data , 2007, Semantic Web Challenge.

[77]  Praveen Paritosh,et al.  Freebase: a collaboratively created graph database for structuring human knowledge , 2008, SIGMOD Conference.

[78]  Gordon B. Davis,et al.  User Acceptance of Information Technology: Toward a Unified View , 2003, MIS Q..

[79]  Sebastian Schaffert,et al.  A SEMANTIC WIKI FOR COLLABORATIVE KNOWLEDGE FORMATION , 2006 .

[80]  Mariano P. Consens,et al.  Linked Movie Data Base , 2009, LDOW.

[81]  James Ze Wang,et al.  Real-Time Computerized Annotation of Pictures , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[82]  Boris Motik,et al.  OWL 2 Web Ontology Language: structural specification and functional-style syntax , 2008 .

[83]  Rafael Schirru,et al.  Contextualized recommendations for the socio-semantic web , 2013 .

[84]  Fred D. Davis A technology acceptance model for empirically testing new end-user information systems : theory and results , 1985 .

[85]  Leo Sauermann,et al.  Personalization in the EPOS project , 2006 .

[86]  Philipp Frischmuth,et al.  OntoWiki: a Semantic Data Wiki Enabling the Collaborative Creation and (Linked Data) Publication of RDF Knowledge Bases , 2010, EKAW.

[87]  James R. Lewis,et al.  IBM computer usability satisfaction questionnaires: Psychometric evaluation and instructions for use , 1995, Int. J. Hum. Comput. Interact..

[88]  Denny Vrandecic,et al.  Semantic Wikis: Approaches, Applications, and Perspectives , 2012, Reasoning Web.

[89]  Steffen Staab,et al.  Knowledge Processes and Ontologies , 2001, IEEE Intell. Syst..

[90]  Barbara D. Adams Trust vs. Confidence , 2005 .

[91]  Ido Dagan,et al.  PROBABILISTIC TEXTUAL ENTAILMENT: GENERIC APPLIED MODELING OF LANGUAGE VARIABILITY , 2004 .

[92]  Gediminas Adomavicius,et al.  Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions , 2005, IEEE Transactions on Knowledge and Data Engineering.

[93]  Christian Bizer,et al.  Media Meets Semantic Web - How the BBC Uses DBpedia and Linked Data to Make Connections , 2009, ESWC.