STRONGLY GORENSTEIN FLAT MODULES

Abstract In this paper, strongly Gorenstein flat modules are introduced and investigated. An R-module M is called strongly Gorenstein flat if there is an exact sequence ⋯→P1→P0→P0→P1→⋯ of projective R-modules with M=ker (P0→P1) such that Hom(−,F) leaves the sequence exact whenever F is a flat R-module. Several well-known classes of rings are characterized in terms of strongly Gorenstein flat modules. Some examples are given to show that strongly Gorenstein flat modules over coherent rings lie strictly between projective modules and Gorenstein flat modules. The strongly Gorenstein flat dimension and the existence of strongly Gorenstein flat precovers and pre-envelopes are also studied.

[1]  Chasen Smith On Gorenstein Projective and Gorenstein Flat Modules , 2011 .

[2]  Zhaoyong Huang,et al.  Strongly Gorenstein Projective , Injective and Flat Modules , 2011 .

[3]  Overtoun M. G. Jenda,et al.  Relative homological algebra , 1956 .

[4]  Xiaoyan Yang,et al.  GORENSTEIN PROJECTIVE, INJECTIVE AND FLAT MODULES , 2009, Journal of the Australian Mathematical Society.

[5]  D. Bennis,et al.  (n,m)-Strongly Gorenstein Projective Modules , 2009, 0907.1993.

[6]  D. Bennis,et al.  Rings Over Which the Class of Gorenstein Flat Modules is Closed Under Extensions , 2008, 0801.1183.

[7]  Zhao Ying-cai On Gorenstein Flat Modules , 2007 .

[8]  N. Mahdou,et al.  Strongly Gorenstein projective, injective, and flat modules , 2006, math/0606770.

[9]  Henrik Holm,et al.  Gorenstein homological dimensions , 2004 .

[10]  L. Christensen,et al.  On Gorenstein projective, injective and flat dimensions—A functorial description with applications , 2004, math/0403156.

[11]  Overtoun M. G. Jenda,et al.  THE EXISTENCE OF GORENSTEIN FLAT COVERS , 2004 .

[12]  J. A. López-Ramos,et al.  Relative homological coalgebras , 2000 .

[13]  E. Enochs,et al.  All Modules Have Flat Covers , 2001 .

[14]  Jianlong Chen,et al.  Coherent rings with finite self-FP-injective dimension , 1996 .

[15]  Jinzhong Xu Flat covers of modules , 1996 .

[16]  Overtoun M. G. Jenda,et al.  Gorenstein injective and projective modules , 1995 .

[17]  Sarah Glaz,et al.  Commutative Coherent Rings , 1989 .

[18]  J. M. Hernández,et al.  Flat envelopes in commutative rings , 1988 .

[19]  E. Enochs Injective and flat covers, envelopes and resolvents , 1981 .

[20]  J. Rotman An Introduction to Homological Algebra , 1979 .

[21]  R. Colby Rings which have flat injective modules , 1975 .

[22]  Frank W. Anderson,et al.  Rings and Categories of Modules , 1974 .

[23]  D. Fieldhouse Character modules, dimension and purity , 1972, Glasgow Mathematical Journal.

[24]  D. Fieldhouse Character modules , 1971 .

[25]  B. Stenström Coherent Rings and Fp-Injective Modules , 1970 .

[26]  M. Bridger,et al.  Stable Module Theory , 1969 .

[27]  H. Bass Finitistic dimension and a homological generalization of semi-primary rings , 1960 .