Two mathematical tools to analyze metastable stochastic processes

We present how entropy estimates and logarithmic Sobolev inequalities on the one hand, and the notion of quasi-stationary distribution on the other hand, are useful tools to analyze metastable overdamped Langevin dynamics, in particular to quantify the degree of metastability. We discuss the interest of these approaches to estimate the efficiency of some classical algorithms used to speed up the sampling, and to evaluate the error introduced by some coarse-graining procedures. This paper is a summary of a plenary talk given by the author at the ENUMATH 2011 conference.

[1]  P. Mandl Spectral theory of semi-groups connected with dif-fusion processes and its application , 1961 .

[2]  M. Freidlin,et al.  Random Perturbations of Dynamical Systems , 1984 .

[3]  R. Pinsky ON THE CONVERGENCE OF DIFFUSION PROCESSES CONDITIONED TO REMAIN IN A BOUNDED REGION FOR LARGE TIME TO LIMITING POSITIVE RECURRENT DIFFUSION PROCESSES , 1985 .

[4]  Masaaki Kijima,et al.  ON THE EXISTENCE OF QUASI-STATIONARY DISTRIBUTIONS , 1992 .

[5]  Servet Martínez,et al.  EXISTENCE OF QUASI-STATIONARY DISTRIBUTIONS. A RENEWAL DYNAMICAL APPROACH , 1995 .

[6]  P. Collet,et al.  Asymptotic Laws for One-Dimensional Diffusions Conditioned to Nonabsorption , 1995 .

[7]  P. Ferrari,et al.  Phase transition for absorbed Brownian motion with drift , 1997 .

[8]  A. Voter Parallel replica method for dynamics of infrequent events , 1998 .

[9]  Peter March,et al.  A Fleming–Viot Particle Representation¶of the Dirichlet Laplacian , 2000 .

[10]  Djalil CHAFAÏ,et al.  Sur les in'egalit'es de Sobolev logarithmiques , 2000 .

[11]  Giuseppe Toscani,et al.  ON CONVEX SOBOLEV INEQUALITIES AND THE RATE OF CONVERGENCE TO EQUILIBRIUM FOR FOKKER-PLANCK TYPE EQUATIONS , 2001 .

[12]  Eric F Darve,et al.  Calculating free energies using average force , 2001 .

[13]  Constance de Koning,et al.  Editors , 2003, Annals of Emergency Medicine.

[14]  I. Grigorescu,et al.  Hydrodynamic limit for a Fleming-Viot type system , 2004 .

[15]  Eric Vanden Eijnden,et al.  Metastability, conformation dynamics, and transition pathways in complex systems , 2004 .

[16]  S. Meyn,et al.  Phase transitions and metastability in Markovian and molecular systems , 2004 .

[17]  S. Evans,et al.  Quasistationary distributions for one-dimensional diffusions with killing , 2004, math/0406052.

[18]  C. Chipot,et al.  Overcoming free energy barriers using unconstrained molecular dynamics simulations. , 2004, The Journal of chemical physics.

[19]  S. Martínez,et al.  Classification of killed one-dimensional diffusions , 2004 .

[20]  A. Stuart,et al.  Extracting macroscopic dynamics: model problems and algorithms , 2004 .

[21]  R. Elber,et al.  Computing time scales from reaction coordinates by milestoning. , 2004, The Journal of chemical physics.

[22]  A. Bovier,et al.  Metastability in Reversible Diffusion Processes I: Sharp Asymptotics for Capacities and Exit Times , 2004 .

[23]  E. Vanden-Eijnden,et al.  Metastability, conformation dynamics, and transition pathways in complex systems , 2004 .

[24]  F. Nier,et al.  Hypoelliptic Estimates and Spectral Theory for Fokker-Planck Operators and Witten Laplacians , 2005 .

[25]  A. Bovier,et al.  Metastability in reversible diffusion processes II. Precise asymptotics for small eigenvalues , 2005 .

[26]  Bernard Helffer,et al.  Quantitative Analysis of Metastability in Reversible Diffusion Processes Via a Witten Complex Approach: The Case With Boundary , 2006 .

[27]  G. Ciccotti,et al.  String method in collective variables: minimum free energy paths and isocommittor surfaces. , 2006, The Journal of chemical physics.

[28]  P. Cattiaux,et al.  Quasi-stationary distributions and diffusion models in population dynamics , 2007, math/0703781.

[29]  T. Lelièvre,et al.  Long-time convergence of an adaptive biasing force method , 2007, 0706.1695.

[30]  Pablo A. Ferrari,et al.  Quasi Stationary Distributions and Fleming-Viot Processes in Countable Spaces , 2007 .

[31]  Gabriel Stoltz,et al.  Computation of free energy profiles with parallel adaptive dynamics. , 2007, The Journal of chemical physics.

[32]  G. Ciccotti,et al.  Projection of diffusions on submanifolds: Application to mean force computation , 2008 .

[33]  Grigorios A. Pavliotis,et al.  Multiscale Methods: Averaging and Homogenization , 2008 .

[34]  Jörg-Uwe Löbus,et al.  A stationary Fleming–Viot type Brownian particle system , 2009 .

[35]  T. Lelièvre A general two-scale criteria for logarithmic Sobolev inequalities , 2009 .

[36]  Maria G. Westdickenberg,et al.  A two-scale approach to logarithmic Sobolev inequalities and the hydrodynamic limit , 2009 .

[37]  Raphael Roux,et al.  Existence, uniqueness and convergence of a particle approximation for the Adaptive Biasing Force process , 2009 .

[38]  T. Lelièvre,et al.  Effective dynamics using conditional expectations , 2009, 0906.4865.

[39]  T. Lelièvre,et al.  Free Energy Computations: A Mathematical Perspective , 2010 .

[40]  Frank Noé,et al.  On the Approximation Quality of Markov State Models , 2010, Multiscale Model. Simul..

[41]  Tony Lelièvre,et al.  Long-Time Convergence of an Adaptive Biasing Force Method: The Bi-Channel Case , 2010 .

[42]  Christophe Chipot,et al.  Enhanced Sampling of Multidimensional Free-Energy Landscapes Using Adaptive Biasing Forces , 2010, SIAM Journal on Applied Mathematics.

[43]  Frank Noé,et al.  Markov state models based on milestoning. , 2011, The Journal of chemical physics.

[44]  Danny Perez,et al.  A mathematical formalization of the parallel replica dynamics , 2011, Monte Carlo Methods Appl..

[45]  Nicolas Chopin,et al.  Free energy methods for Bayesian inference: efficient exploration of univariate Gaussian mixture posteriors , 2010, Statistics and Computing.

[46]  Tony Lelievre,et al.  Some Remarks on Free Energy and Coarse-Graining , 2012 .

[47]  Gabriel Stoltz,et al.  Langevin dynamics with constraints and computation of free energy differences , 2010, Math. Comput..

[48]  Patrick Cattiaux,et al.  Functional inequalities via Lyapunov conditions , 2010, Optimal Transport.