On aggregation of normed structures

[1]  Albert Wilansky,et al.  Topology for Analysis , 1970 .

[2]  Jozef Doboš,et al.  On a product of metric spaces , 1981 .

[3]  Alfred V. Aho,et al.  Data Structures and Algorithms , 1983 .

[4]  D. Whittaker,et al.  A Course in Functional Analysis , 1991, The Mathematical Gazette.

[5]  Gilles Brassard,et al.  Algorithmics - theory and practice , 1988 .

[6]  Irmina Herburt,et al.  On metric products , 1991 .

[7]  Michel P. Schellekens,et al.  The Smyth completion: a common foundation for denotational semantics and complexity analysis , 1995, MFPS.

[8]  R. K. Shyamasundar,et al.  Introduction to algorithms , 1996 .

[9]  Robert Lowen,et al.  Handbook of the History of General Topology , 1997 .

[10]  Anthony Karel Seda Quasi-Metrics and the Semantics of Logic Programs , 1997, Fundam. Informaticae.

[11]  Robert W. Vallin A subset of metric preserving functions , 1998 .

[12]  Salvador Romaguera,et al.  Quasi-metric properties of complexity spaces , 1999 .

[13]  E. Allen Emerson,et al.  The Complexity of Tree Automata and Logics of Programs , 1999, SIAM J. Comput..

[14]  Pascal Hitzler,et al.  Some Issues Concerning Fixed-Points in Computational Logic: Quasi-Metrics, Multivalued Mappings and the Knaster-Tarski Theorem , 1999 .

[15]  Pascal Hitzler,et al.  Some Issues Concerning Fixed Points in Computational Logic: Quasi-Metrics, Multivalued Mappings and , 2000 .

[16]  Hans-Peter A. Künzi,et al.  Nonsymmetric Distances and Their Associated Topologies: About the Origins of Basic Ideas in the Area of Asymmetric Topology , 2001 .

[17]  ANA PRADERAa,et al.  A note on pseudometrics aggregation , 2002 .

[18]  Salvador Romaguera,et al.  Duality and quasi-normability for complexity spaces , 2002 .

[19]  Salvador Romaguera,et al.  Sequence spaces and asymmetric norms in the theory of computational complexity , 2002 .

[20]  Enric Trillas,et al.  On the aggregation of some classes of fuzzy relations , 2002 .

[21]  J. Kacprzyk,et al.  Technologies for constructing intelligent systems: Tasks , 2002 .

[22]  Salvador Romaguera,et al.  The supremum asymmetric norm on sequence algebras: a general framework to measure complexity distances , 2002, Electron. Notes Theor. Comput. Sci..

[23]  Radko Mesiar,et al.  Domination of Aggregation Operators and Preservation of Transitivity , 2002, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[24]  Óscar Valero,et al.  Computing complexity distances between algorithms , 2003, Kybernetika.

[25]  Aleksandar Stojmirovic Quasi-metric spaces with measure , 2003 .

[26]  Alexander A. Pavlov,et al.  Normed Groups and Their Applications in Noncommutative Differential Geometry , 2003 .

[27]  F. Rosselló,et al.  Midpoints as average representations of pairs of descriptions by means of fuzzy subsets , 2004 .

[28]  Francesc Rosselló,et al.  Averaging fuzzy biopolymers , 2005, Fuzzy Sets Syst..

[29]  Hans-Peter A. Künzi,et al.  Partial quasi-metrics , 2006, Theor. Comput. Sci..

[30]  Vladimir Pestov,et al.  Indexing schemes for similarity search in datasets of short protein fragments , 2007, Inf. Syst..

[31]  R. Mesiar,et al.  ”Aggregation Functions”, Cambridge University Press , 2008, 2008 6th International Symposium on Intelligent Systems and Informatics.

[32]  Radko Mesiar,et al.  Aggregation of infinite sequences , 2008, Inf. Sci..

[33]  Aleksandar Stojmirovic,et al.  Quasi-metrics, Similarities and Searches: aspects of geometry of protein datasets , 2008, ArXiv.

[34]  Oscar Valero,et al.  A connection between computer science and fuzzy theory: midpoints and running time of computing , 2008, SOCO 2008.

[35]  Aleksandar Stojmirovic,et al.  Geometric Aspects of Biological Sequence Comparison , 2009, J. Comput. Biol..

[36]  Óscar Valero,et al.  The average running time of an algorithm as a midpoint between fuzzy sets , 2009, Math. Comput. Model..

[37]  R. Mesiar,et al.  Aggregation Functions: Aggregation on ordinal scales , 2009 .

[38]  Óscar Valero,et al.  Aggregation of asymmetric distances in Computer Science , 2010, Inf. Sci..