Improved general scaling factors and systematic tests of the SAC method for estimating correlation energies of molecules

[1]  P. C. Hariharan,et al.  The influence of polarization functions on molecular orbital hydrogenation energies , 1973 .

[2]  J. S. Binkley,et al.  Electron correlation theories and their application to the study of simple reaction potential surfaces , 1978 .

[3]  Michael J. Frisch,et al.  Contribution of triple substitutions to the electron correlation energy in fourth order perturbation theory , 1980 .

[4]  R. Bartlett Many-Body Perturbation Theory and Coupled Cluster Theory for Electron Correlation in Molecules , 1981 .

[5]  F. B. Brown,et al.  An improved calculation of the transition state for the F + H2 reaction , 1985 .

[6]  F. B. Brown,et al.  A new semi-empirical method of correcting large-scale configuration interaction calculations for incomplete dynamic correlation of electrons , 1985 .

[7]  Delano P. Chong,et al.  A modified coupled pair functional approach , 1986 .

[8]  F. B. Brown,et al.  The potential energy surface for the F+H2 reaction as a function of bond angle in the saddle point vicinity , 1986 .

[9]  Mark S. Gordon,et al.  Scaling all correlation energy in perturbation theory calculations of bond energies and barrier heights , 1986 .

[10]  Martin Head-Gordon,et al.  Quadratic configuration interaction. A general technique for determining electron correlation energies , 1987 .

[11]  M. Gordon,et al.  Correlation balance in basis sets for electronic structure calculations , 1987 .

[12]  F. B. Brown,et al.  Estimation of higher‐order correlation effects on the potential energy surface for the F+H2 reaction in the saddle point vicinity , 1987 .

[13]  Donald G. Truhlar,et al.  A double many‐body expansion of the two lowest‐energy potential surfaces and nonadiabatic coupling for H3 , 1987 .

[14]  L. Curtiss,et al.  Gaussian‐1 theory: A general procedure for prediction of molecular energies , 1989 .

[15]  Parameters for scaling the correlation energy of the bonds Si-H, P-H, S-H, and Cl-H and application to the reaction of silyl radical with silane , 1989 .

[16]  Donald G. Truhlar,et al.  Ab initio calculations of the transition-state geometry and vibrational frequencies of the SN2 reaction of chloride with chloromethane , 1989 .

[17]  Mark S. Gordon,et al.  Transition state structure, barrier height, and vibrational frequencies for the reaction Cl+CH4→CH3+HCl , 1989 .

[18]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[19]  F. B. Brown,et al.  Global potential-energy surfaces for H2Cl , 1989 .

[20]  S. Langhoff,et al.  The effect of higher than double excitations on the F+H2→FH+H barrier , 1989 .

[21]  D. Truhlar,et al.  Ab initio transition state theory calculations of the reaction rate for OH+CH4→H2O+CH3 , 1990 .

[22]  B. C. Garrett,et al.  Use of scaled external correlation, a double many-body expansion, and variational transition state theory to calibrate a potential energy surface for FH2 , 1991 .

[23]  Anomalous methoxy radical yields in the fluorine + methanol reaction. 2. Theory , 1991 .

[24]  Jan M. L. Martin On the performance of large Gaussian basis sets for the computation of total atomization energies , 1992 .

[25]  A. Nanayakkara,et al.  Barrier heights for hydrogen atom transfer reactions: evaluation of ab initio molecular orbital methods for the degenerate exchange hydroxyl radical + water .fwdarw. H2O + .bul.OH , 1992 .

[26]  Erratum: Abinitio transition state theory calculations of the reaction rate for OH+CH4→H2O+CH3 [J. Chem. Phys. 93, 1761 (1990)] , 1992 .

[27]  L. Pardo,et al.  Theoretical studies of the kinetics, thermochemistry, and mechanism of H-abstraction from methanol and ethanol , 1992 .

[28]  New theoretical value of the enthalpy of formation of the hydroxymethyl radical , 1993 .

[29]  Theoretical Thermochemistry and Kinetics of Some Hydrogen Abstraction Reactions On Nitrogen , 1993 .

[30]  Theoretical study of intermediate complexes and the saddle point for ammonia + hydroxyl .fwdarw. amidogen + water , 1993 .

[31]  D. Truhlar,et al.  Interpolated variational transition state theory and tunneling calculations of the rate constant of the reaction OH+CH4 at 223–2400 K , 1993 .

[32]  D. Truhlar,et al.  Deuterium and carbon‐13 kinetic isotope effects for the reaction of OH with CH4 , 1993 .

[33]  F. B. Brown,et al.  Kinetic isotope studies of the gas-phase reaction (H,D,Mu)+HBr→(H,D,Mu)H+Br , 1994 .

[34]  M. Blomberg,et al.  PCI-X, a parametrized correlation method containing a single adjustable parameter X , 1994 .

[35]  D. Truhlar,et al.  Interpolated variational transition-state theory and semiclassical tunneling calculations of the rate constant of the reaction hydroxyl + ethane at 200-3000 K , 1994 .