Frequency dependent activation of a slow N-methyl-d-aspartate-dependent excitatory postsynaptic potential in turtle cerebellum by mossy fibre afferents

[1]  O. Larsell The cerebellum of reptiles: Chelonians and alligator , 1932 .

[2]  R. T. Woodburne A phylogenetic consideration of the primary and secondary centers and connections of the trigeminal complex in a series of vertebrates , 1936 .

[3]  A. Stuart,et al.  Non-Parametric Statistics for the Behavioral Sciences. , 1957 .

[4]  Professor Dr. John C. Eccles,et al.  The Cerebellum as a Neuronal Machine , 1967, Springer Berlin Heidelberg.

[5]  C A Terzuolo,et al.  Transmission of proprioceptive information via the dorsal spinocerebellar tract. , 1967, Brain research.

[6]  Virgil L. Jacobs,et al.  An experimental study of the course and temination of the spino-cerebellar systems in a lizard (Lactera viridis). , 1968, Brain research.

[7]  D. Whitlock,et al.  Central distribution of trigeminal primary afferent fibers in anuran amphibians , 1968, The Anatomical record.

[8]  T. Hayle A comparative study of spinocerebellar systems in three classes of poikilothermic vertebrates , 1973, The Journal of comparative neurology.

[9]  Ian Darian-Smith,et al.  The Trigeminal System , 1973 .

[10]  M. Sanders Handbook of Sensory Physiology , 1975 .

[11]  R. Switzer,et al.  Trigeminal projections to cerebellar tactile areas in the rat-origin mainly from n. interpolaris and n. principalis , 1978, Neuroscience Letters.

[12]  R. Llinás,et al.  Electrophysiological properties of in vitro Purkinje cell dendrites in mammalian cerebellar slices. , 1980, The Journal of physiology.

[13]  J. Jefferys,et al.  Influence of electric fields on the excitability of granule cells in guinea‐pig hippocampal slices. , 1981, The Journal of physiology.

[14]  H. J. Donkelaar,et al.  Afferent connections of the cerebellum in various types of reptiles , 1982, The Journal of comparative neurology.

[15]  W. Woodson,et al.  Mesodiencephalic and other target regions of ascending spinal projections in the turtle, Pseudemys scripta elegans , 1982, The Journal of comparative neurology.

[16]  F. Crépel,et al.  Voltage clamp analysis of the effect of excitatory amino acids and derivatives on Purkinje cell dendrites in rat cerebellar slices maintained in vitro , 1983, Brain Research.

[17]  J. Bower,et al.  Congruence of spatial organization of tactile projections to granule cell and Purkinje cell layers of cerebellar hemispheres of the albino rat: vertical organization of cerebellar cortex. , 1983, Journal of neurophysiology.

[18]  F. Crépel,et al.  Effect of excitatory amino acids on purkinje cell dendrites in cerebellar slices from normal and staggerer mice , 1984, Neuroscience.

[19]  R. Llinás,et al.  Functional Significance of the Basic Cerebellar Circuit in Motor Coordination , 1984 .

[20]  Masao Ito The Cerebellum And Neural Control , 1984 .

[21]  A. Lohman,et al.  The motor complex and primary projections of the trigeminal nerve in the monitor lizard, varanus exanthematicus , 1986, The Journal of comparative neurology.

[22]  Y. Arshavsky,et al.  Cerebellum and Rhythmical Movements , 1986 .

[23]  A. Ganong,et al.  Effects of excitatory amino acid antagonists on evoked and spontaneous excitatory potentials in guinea‐pig hippocampus. , 1986, The Journal of physiology.

[24]  B. Roth,et al.  Coupling of Inositol Phospholipid Metabolism with Excitatory Amino Acid Recognition Sites in Rat Hippocampus , 1986, Journal of neurochemistry.

[25]  M. Geffard,et al.  Specific antibodies against aspartate and their immunocytochemical application in the rat brain , 1986, Brain Research.

[26]  J. Penney,et al.  Autoradiographic localization of cerebellar excitatory amino acid binding sites in the mouse , 1987, Neuroscience.

[27]  S N Davies,et al.  Quinoxalinediones: potent competitive non-NMDA glutamate receptor antagonists. , 1988, Science.

[28]  M. Kano,et al.  The glutamate receptor subtype mediating parallel fibre-Purkinje cell transmission in rabbit cerebellar cortex , 1988, Neuroscience Research.

[29]  C. Grossman,et al.  6,7-Dinitro-quinoxaline-2,3-dion and 6-nitro,7-cyano-quinoxaline-2,3-dion antagonise responses to NMDA in the rat spinal cord via an action at the strychnine-insensitive glycine receptor. , 1988, European journal of pharmacology.

[30]  J Midtgaard,et al.  Synaptic control of excitability in turtle cerebellar Purkinje cells. , 1989, The Journal of physiology.

[31]  J. Hounsgaard,et al.  Excitatory synaptic responses in turtle cerebellar Purkinje cells. , 1989, The Journal of physiology.

[32]  H. Zeigler,et al.  Cerebellar connections of the trigeminal system in the pigeon (Columbia livia) , 1989, Brain Research.

[33]  C. Jahr,et al.  Interaction of 6-cyano-7-nitroquinoxaline-2,3-dione with the N-methyl-D-aspartate receptor-associated glycine binding site. , 1989, Molecular pharmacology.

[34]  J. Garthwaite,et al.  Synaptic activation of N-methyl-d-aspartate and non-N-methyl-d-aspartate receptors in the mossy fibre pathway in adult and immature rat cerebellar slices , 1989, Neuroscience.

[35]  N. Slater,et al.  Excitatory amino acid receptors mediate slow synaptic transmission in turtle cerebellum , 1989, Neuroscience Letters.

[36]  N. Slater,et al.  Slow excitatory amino acid receptor-mediated synaptic transmission in turtle cerebellar Purkinje cells. , 1990, Journal of neurophysiology.

[37]  R. Nicoll,et al.  Excitatory synaptic currents in Purkinje cells , 1990, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[38]  E. D'Angelo,et al.  Dual-component NMDA receptor currents at a single central synapse , 1990, Nature.

[39]  J. Bockaert,et al.  Pharmacological and functional characteristics of metabotropic excitatory amino acid receptors. , 1990, Trends in pharmacological sciences.

[40]  Neurology and Neurobiology , 1990 .

[41]  J. Garthwaite,et al.  Glutamate as the Principal Mossy Fibre Transmitter in Rat Cerebellum: pharmacological evidence , 1990, The European journal of neuroscience.

[42]  H. Jahnsen Preparations of vertebrate central nervous system in vitro , 1990 .

[43]  P. Conn,et al.  Excitatory effects of ACPD receptor activation in the hippocampus are mediated by direct effects on pyramidal cells and blockade of synaptic inhibition. , 1991, Journal of neurophysiology.

[44]  P. Bregestovski,et al.  Selective activation of quisqualate metabotropic receptor potentiates NMDA but not AMPA responses. , 1991, European journal of pharmacology.

[45]  B. Alger Gating of GABAergic Inhibition in Hippocampal Pyramidal Cells a , 1991, Annals of the New York Academy of Sciences.

[46]  E. Audinat,et al.  Excitatory amino acid receptors of cerebellar Purkinje cells: development and plasticity. , 1991, Progress in biophysics and molecular biology.

[47]  N. Slater,et al.  Excitatory amino acid receptor-mediated transmission in geniculocortical and intracortical pathways within visual cortex. , 1991, Journal of neurophysiology.

[48]  S. Kelso,et al.  Trans-ACPD reduces multiple components of synaptic transmission in the rat hippocampus , 1991, Neuroscience Letters.

[49]  M. Farrant,et al.  Excitatory amino acid receptor-channels in Purkinje cells in thin cerebellar slices , 1991, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[50]  A. Konnerth,et al.  Synaptic‐ and agonist‐induced excitatory currents of Purkinje cells in rat cerebellar slices. , 1991, The Journal of physiology.

[51]  SR Glaum,et al.  Metabotropic glutamate receptors mediate excitatory transmission in the nucleus of the solitary tract , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[52]  D. Rossi,et al.  Role of metabotropic glutamate (ACPD) receptors at the parallel fiber-Purkinje cell synapse. , 1992, Journal of neurophysiology.

[53]  S. Nakanishi,et al.  A family of metabotropic glutamate receptors , 1992, Neuron.

[54]  G. Westbrook,et al.  L-AP4 inhibits calcium currents and synaptic transmission via a G- protein-coupled glutamate receptor , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[55]  J. Rossier,et al.  AMPA receptor subunits expressed by single purkinje cells , 1992, Neuron.

[56]  R. Huganir,et al.  Cellular localization of a metabotropic glutamate receptor in rat brain , 1992, Neuron.

[57]  R. Silver,et al.  Rapid-time-course miniature and evoked excitatory currents at cerebellar synapses in situ , 1992, Nature.

[58]  G. Kinney,et al.  Potentiation of mossy fiber-evoked EPSPs in turtle cerebellar Purkinje cells by the metabotropic glutamate receptor agonist 1S,3R-ACPD. , 1992, Journal of neurophysiology.

[59]  A. Konnerth,et al.  Brief dendritic calcium signals initiate long-lasting synaptic depression in cerebellar Purkinje cells. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[60]  E. D'Angelo,et al.  Different proportions of N-methyl-d-aspartate and non-N-methyl-d-aspartate receptor currents at the mossy fibre-granule cell synapse of developing rat cerebellum , 1993, Neuroscience.

[61]  G. Collingridge,et al.  Signal transduction pathways involved in the acute potentiation of NMDA responses by 1S,3R‐ACPD in rat hippocampal slices , 1993, British journal of pharmacology.

[62]  K. Lingenhöhl,et al.  Phenylglycine derivatives antagonize the excitatory response of Purkinje cells to 1S,3R-ACPD: an in vivo and in vitro study , 1993, Neuroscience Research.

[63]  G. Collingridge,et al.  Metabotropic glutamate receptors and calcium signalling in dendrites of hippocampal CA1 neurones , 1993, Neuropharmacology.

[64]  P. Suzdak,et al.  Expression pattern and pharmacology of the rat type IV metabotropic glutamate receptor , 1993, Neuroscience Letters.

[65]  Analysis of AMPA receptor subunits expressed by single Purkinje cells using RNA polymerase chain reaction. , 1993, Biochemical Society transactions.

[66]  T. Salt,et al.  Stereospecific antagonism by (+)-α-methyl-4-carboxyphenylglycine (MCPG) of (1S,3R)-ACPD-induced effects in neonatal rat motoneurones and rat thalamic neurones , 1993, Neuropharmacology.

[67]  R. Silver,et al.  Estimated conductance of glutamate receptor channels activated during EPSCs at the cerebellar mossy fiber-granule cell synapse , 1993, Neuron.

[68]  B. Barbour Synaptic currents evoked in purkinje cells by stimulating individual granule cells , 1993, Neuron.

[69]  G. Collingridge,et al.  Induction of LTP in the hippocampus needs synaptic activation of glutamate metabotropic receptors , 1993, Nature.

[70]  J. Disterhoft,et al.  Activation of metabotropic glutamate receptors induces long-term depression of GABAergic inhibition in hippocampus. , 1993, Journal of neurophysiology.

[71]  G. Kinney,et al.  Potentiation of NMDA receptor-mediated transmission in turtle cerebellar granule cells by activation of metabotropic glutamate receptors. , 1993, Journal of neurophysiology.

[72]  S. Glaum,et al.  Acute Regulation of Synaptic Transmission by Metabotropic Glutamate Receptors , 1994 .

[73]  S. Heinemann,et al.  Cloned glutamate receptors. , 1994, Annual review of neuroscience.

[74]  D. Linden,et al.  Long-term synaptic depression in the mammalian brain , 1994, Neuron.

[75]  D. Schoepp,et al.  Metabotropic glutamate receptors , 1994, Pharmacology Biochemistry and Behavior.