A Note on Low Autocorrelation Binary Sequences

The Low Autocorrelation Binary Sequences problem (LABS) is problem 005 in the CSPLIB library, where it is stated that “these problems pose a significant challenge to local search methods”. This paper presents a straighforward tabu search that systematically finds the optimal solutions for all tested instances.

[1]  Ian P. Gent,et al.  Symmetry breaking during search in constraint programming , 1999 .

[2]  Steven David Prestwich A Hybrid Search Architecture Applied to Hard Random 3-SAT and Low-Autocorrelation Binary Sequences , 2000, CP.

[3]  K. Hoffmann,et al.  Low autocorrelation binary sequences: exact enumeration and optimization by evolutionary strategies , 1992 .

[4]  Marcel J. E. Golay,et al.  The merit factor of long low autocorrelation binary sequences , 1982, IEEE Trans. Inf. Theory.

[5]  Pericles S. Theocaris Number theory in science and communication , 1986 .

[6]  J. Bernasconi Low autocorrelation binary sequences : statistical mechanics and configuration space analysis , 1987 .

[7]  MARCEL J. E. GOLAY,et al.  Sieves for low autocorrelation binary sequences , 1977, IEEE Trans. Inf. Theory.

[8]  I. Shapiro Fourth Test of General Relativity , 1964 .

[9]  Matthias F. Stallmann,et al.  Reliable Cost Predictions for Finding Optimal Solutions to LABS Problem: Evolutionary and Alternative Algorithms , 2003 .

[10]  Steven David Prestwich Negative Effects of Modeling Techniques on Search Performance , 2003, Ann. Oper. Res..

[11]  Qizhong Wang Optimization by simulating molecular evolution , 1987, Biological Cybernetics.

[12]  Toby Walsh,et al.  CSPLIB: A Benchmark Library for Constraints , 1999, CP.

[13]  S. Lang Number Theory III , 1991 .

[14]  Andrea Roli,et al.  Symmetry Breaking and Local Search Spaces , 2005, CPAIOR.

[15]  R. P. Ingalls,et al.  FOURTH TEST OF GENERAL RELATIVITY: PRELIMINARY RESULTS. , 1968 .

[16]  S. Mertens Exhaustive search for low-autocorrelation binary sequences , 1996 .