Conic programming: Infeasibility certificates and projective geometry

We revisit facial reduction from the point of view of projective geometry. This leads us to a homogenization strategy in conic programming that eliminates the phenomenon of weak infeasibility. For semidefinite programs (and others), this yields infeasibility certificates that can be checked in polynomial time. Furthermore, we propose a refined type of infeasibility, which we call stably infeasible, for which rational infeasibility certificates exist and that can be distinguished from other infeasibility types by our homogenization.

[1]  Motakuri V. Ramana,et al.  An exact duality theory for semidefinite programming and its complexity implications , 1997, Math. Program..

[2]  Alexander Barvinok,et al.  A course in convexity , 2002, Graduate studies in mathematics.

[3]  J. Lofberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004, 2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No.04CH37508).

[4]  Shinji Mizuno,et al.  An O(√nL)-Iteration Homogeneous and Self-Dual Linear Programming Algorithm , 1994, Math. Oper. Res..

[5]  Rainer Sinn,et al.  A Note on the Convex Hull of Finitely Many Projections of Spectrahedra , 2009 .

[6]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[7]  Rekha R. Thomas,et al.  Semidefinite Optimization and Convex Algebraic Geometry , 2012 .

[8]  Joe W. Harris,et al.  Algebraic Geometry: A First Course , 1995 .

[9]  J. Borwein,et al.  Facial reduction for a cone-convex programming problem , 1981, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics.

[10]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[11]  G. Pataki On the connection of facially exposed and nice cones , 2012, 1202.4043.

[12]  Didier Henrion,et al.  GloptiPoly 3: moments, optimization and semidefinite programming , 2007, Optim. Methods Softw..

[13]  Robert M. Freund,et al.  Condition number complexity of an elementary algorithm for computing a reliable solution of a conic linear system , 2000, Math. Program..

[14]  Gábor Pataki,et al.  On the Closedness of the Linear Image of a Closed Convex Cone , 2007, Math. Oper. Res..

[15]  David P. Williamson,et al.  Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming , 1995, JACM.

[16]  J. William Helton,et al.  Sufficient and Necessary Conditions for Semidefinite Representability of Convex Hulls and Sets , 2007, SIAM J. Optim..

[17]  Gábor Pataki,et al.  Bad Semidefinite Programs: They All Look the Same , 2011, SIAM J. Optim..

[18]  J. Farkas Theorie der einfachen Ungleichungen. , 1902 .

[19]  Victor Magron,et al.  In SDP Relaxations, Inaccurate Solvers Do Robust Optimization , 2019, SIAM J. Optim..

[20]  Masakazu Muramatsu,et al.  Facial Reduction Algorithms for Conic Optimization Problems , 2012, Journal of Optimization Theory and Applications.

[21]  Claus Scheiderer,et al.  Sums of squares of polynomials with rational coefficients , 2012, 1209.2976.

[22]  Igor Klep,et al.  An Exact Duality Theory for Semidefinite Programming Based on Sums of Squares , 2012, Math. Oper. Res..

[23]  Tamás Terlaky,et al.  New stopping criteria for detecting infeasibility in conic optimization , 2009, Optim. Lett..

[24]  A. Garulli,et al.  Positive Polynomials in Control , 2005 .

[25]  Lenore Blum,et al.  Complexity and Real Computation , 1997, Springer New York.

[26]  Kim-Chuan Toh,et al.  SDPT3 -- A Matlab Software Package for Semidefinite Programming , 1996 .

[27]  G. Pataki Strong Duality in Conic Linear Programming: Facial Reduction and Extended Duals , 2013, 1301.7717.

[28]  Minghui Liu,et al.  Exact duals and short certificates of infeasibility and weak infeasibility in conic linear programming , 2015, Math. Program..

[29]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[30]  E. D. Klerk,et al.  Aspects of semidefinite programming : interior point algorithms and selected applications , 2002 .

[31]  Hayato Waki,et al.  How to generate weakly infeasible semidefinite programs via Lasserre’s relaxations for polynomial optimization , 2011, Optimization Letters.

[32]  Masakazu Muramatsu,et al.  A structural geometrical analysis of weakly infeasible SDPs , 2015 .

[33]  Etienne de Klerk,et al.  Aspects of Semidefinite Programming , 2002 .

[34]  Henry Wolkowicz,et al.  Strong Duality for Semidefinite Programming , 1997, SIAM J. Optim..

[35]  T. Willmore Algebraic Geometry , 1973, Nature.