Application of generalized complex modes to the calculation of the forced response of three-dimensional poroelastic materials

[1]  W. J. Duncan,et al.  Elementary matrices and some applications to dynamics and differential equations , 1939 .

[2]  M. Biot Theory of Propagation of Elastic Waves in a Fluid‐Saturated Porous Solid. I. Low‐Frequency Range , 1956 .

[3]  T. Bridges,et al.  Differential eigenvalue problems in which the parameter appears nonlinearly , 1984 .

[4]  Joel Koplik,et al.  Theory of dynamic permeability and tortuosity in fluid-saturated porous media , 1987, Journal of Fluid Mechanics.

[5]  F. Chatelin Valeurs propres de matrices , 1988 .

[6]  J. F. Allard,et al.  Propagation of sound in porous media , 1993 .

[7]  J. Allard Propagation of Sound in Porous Media: Modelling Sound Absorbing Materials , 1994 .

[8]  Yeon June Kang,et al.  Finite element modeling of isotropic elastic porous materials coupled with acoustical finite elements , 1995 .

[9]  Peter Göransson A weighted residual formulation of the acoustic wave propagation through a flexible porous material and a comparison with a limp material model , 1995 .

[10]  N. Atalla,et al.  Mixed displacement-pressure formulation for acoustic anisotropic open porous media , 1997 .

[11]  Raymond Panneton,et al.  An efficient finite element scheme for solving the three-dimensional poroelasticity problem in acoustics , 1997 .

[12]  Raymond Panneton,et al.  A mixed displacement-pressure formulation for poroelastic materials , 1998 .

[13]  Franck Sgard,et al.  A modal reduction technique for the finite element formulation of Biot’s poroelasticity equations in acoustics applied to multilayered structures , 1998 .

[14]  Peter Göransson,et al.  A 3-D, symmetric, finite element formulation of the Biot equations with application to acoustic wave propagation through an elastic porous medium , 1998 .

[15]  Raymond Panneton,et al.  BOUNDARY CONDITIONS FOR THE WEAK FORMULATION OF THE MIXED (U, P) POROELASTICITY PROBLEM , 1999 .

[16]  N. Atalla,et al.  A mixed wave finite‐element approach for solving Biot’s poroelasticity equations in acoustics , 1999 .

[17]  N. Atalla,et al.  A numerical model for the low frequency diffuse field sound transmission loss of double-wall sound barriers with elastic porous linings , 2000 .

[18]  Nils-Erik Hörlin,et al.  A 3-D HIERARCHICAL FE FORMULATION OF BIOT'S EQUATIONS FOR ELASTO-ACOUSTIC MODELLING OF POROUS MEDIA , 2001 .

[19]  S. Rigobert Modélisation par éléments finis des systèmes élasto-poro-acoustiques couplés , 2001 .

[20]  Noureddine Atalla,et al.  Convergence of poroelastic finite elements based on Biot displacement formulation , 2001 .

[21]  C. Lamarque,et al.  AN EXTENSION OF COMPLEX MODES FOR THE RESOLUTION OF FINITE-ELEMENT POROELASTIC PROBLEMS , 2002 .