Modelling the impacts of variable renewable sources on the power sector: Reconsidering the typology of energy modelling tools

The exploration of future energy system trajectories needs to be based on long-term scenarios, which in turn requires using long-term modelling tools. Introducing a strong decarbonisation constraint, for instance, profoundly modifies the power sector, which is impacted by increasing shares of variable renewable energy sources. Long-term modelling tools working on different assumptions increasingly factor in these impacts, the assessment of which requires a clear description and categorization of the technical and economic choices for representing the tools in question. A new typology based on a literature review is presented for both power sector models and long-term models of the energy system. New comparing criteria focussing on the power sector's components are put forward, such as electricity storage and grid. An analysis carried out by means of this categorization on five chosen models shows that, up until now, energy modelling tools and power system tools have been designed to meet separate objectives and have not combined their advantages.

[1]  J. Edmonds,et al.  The ObjECTS Framework for Integrated Assessment: Hybrid Modeling of Transportation , 2006 .

[2]  Ross Baldick,et al.  A strategic review of electricity systems models , 2010 .

[3]  William D'haeseleer,et al.  The importance of including short-term dynamics in planning models for electricity systems with high shares of intermittent renewables , 2014 .

[4]  Alan S. Manne,et al.  MARKAL-MACRO: A linked model for energy-economy analysis , 1992 .

[5]  Antonio J. Conejo,et al.  Correlated wind-power production and electric load scenarios for investment decisions , 2013 .

[6]  Nebojsa Nakicenovic,et al.  Global energy : perspectives , 1998 .

[7]  Elmar Kriegler,et al.  Description of the ReMIND-R model , 2011 .

[8]  Semida Silveira,et al.  OSeMOSYS: The Open Source Energy Modeling System: An introduction to its ethos, structure and development , 2011 .

[9]  Ahmad Rizal Mohd Yusof,et al.  A review of MARKAL energy modeling , 2009 .

[10]  B. Hobbs,et al.  A model of the European electricity market. What can we learn from a geographical expansion to EU20 , 2005 .

[11]  Leslie G. Fishbone,et al.  Markal, a linear‐programming model for energy systems analysis: Technical description of the bnl version , 1981 .

[12]  Peter Schwartz,et al.  The Art of the Long View: Planning for the Future in an Uncertain World , 1996 .

[13]  Duehee Lee,et al.  Future Wind Power Scenario Synthesis Through Power Spectral Density Analysis , 2014, IEEE Transactions on Smart Grid.

[14]  Alan S. Manne,et al.  Merge: An Integrated Assessment Model for Global Climate Change , 2005 .

[15]  Brian Ó Gallachóir,et al.  Soft-linking of a power systems model to an energy systems model , 2012 .

[16]  R. Loulou,et al.  The role of nuclear energy in long-term climate scenarios: An analysis with the World-TIMES model , 2007 .

[17]  Dominique van der Mensbrugghe,et al.  The OECD green model , 1994 .

[18]  Mark Jaccard,et al.  Hybrid Modeling: New Answers to Old Challenges Introduction to the Special Issue of The Energy Journal , 2006 .

[19]  Keywan Riahi,et al.  Impacts of considering electric sector variability and reliability in the MESSAGE model , 2013 .

[20]  E. Jochem,et al.  Introduction to Energy Systems Modelling , 2012 .

[21]  V. Mazauric,et al.  Key features of the electricity production sector through long-term planning : the French case , 2006, 2006 IEEE PES Power Systems Conference and Exposition.

[22]  S. Iniyan,et al.  A review of energy models , 2006 .

[23]  Mark Jaccard,et al.  Modeling the cost of climate policy: Distinguishing between alternative cost definitions and long-run cost dynamics , 2003 .

[24]  Valentina Bosetti,et al.  A World induced Technical Change Hybrid Model , 2006 .

[25]  Brian Vad Mathiesen,et al.  A review of computer tools for analysing the integration of renewable energy into various energy systems , 2010 .

[26]  Ad Seebregts,et al.  Energy/Environmental Modeling with the MARKAL Family of Models , 2002 .

[27]  M. Tavoni,et al.  A World Induced Technical Change Hybrid Model , 2006 .

[28]  S. I. Vagropoulos,et al.  Electricity market models and RES integration: The Greek case , 2014 .

[29]  Antonio J. Conejo,et al.  Strategic Wind Power Investment , 2014, IEEE Transactions on Power Systems.

[30]  Manuel Welsch,et al.  Enhancing the Treatment of Systems Integration in Long-term Energy Models , 2013 .

[31]  Brian Ó Gallachóir,et al.  Long‐term energy models: Principles, characteristics, focus, and limitations , 2013 .

[32]  Gerard P. J. Dijkema,et al.  An Agent Based Model of the System of Electricity Production Systems: Exploring the Impact of CO2 Emission-Trading , 2007, 2007 IEEE International Conference on System of Systems Engineering.

[33]  Michael Cw Kintner-Meyer,et al.  Analysis Tools for Sizing and Placement of Energy Storage for Grid Applications - A Literature Review , 2010 .

[34]  Patrik Söderholm,et al.  Challenges in Soft-Linking: The Case of EMEC and TIMES-Sweden , 2013 .

[35]  Sergey Paltsev,et al.  A Forward Looking Version of the MIT Emissions Prediction and Policy Analysis (EPPA) Model , 2008 .

[36]  Marco Cometto,et al.  Nuclear Energy and Renewables - System Effects in Low-Carbon Electricity Systems , 2012 .

[37]  Patrik Söderholm,et al.  Challenges in top-down and bottom-up soft lnking : the case of EMEC and TIMES-Sweden , 2013 .

[38]  Toshihiko Nakata,et al.  Energy-economic models and the environment , 2004 .

[39]  M. Dicorato,et al.  A regional energy planning methodology including renewable energy sources and environmental constraints , 2003 .

[40]  Subhes C. Bhattacharyya,et al.  A review of energy system models , 2010 .

[41]  Frédéric Reynès,et al.  Presentation of the Three-ME model: Multi-sector Macroeconomic Model for the Evaluation of Environmental and Energy policy , 2011 .

[42]  Alain Bernard,et al.  GEMINI-E3, un modèle d'équilibre général national - international économique, énergétique et environnemental , 1998 .

[43]  Seyed Hossein Hosseinian,et al.  Improved Stochastic Modeling: An Essential Tool for Power System Scheduling in the Presence of Uncertain Renewables , 2013 .

[44]  M. O'Malley,et al.  Unit Commitment for Systems With Significant Wind Penetration , 2009, IEEE Transactions on Power Systems.

[45]  C. Weber,et al.  The relevance of CCS for the future power market , 2011, 2011 IEEE Power and Energy Society General Meeting.

[46]  Steven J. Smith,et al.  Model Documentation for the MiniCAM , 2003 .

[47]  Lion Hirth,et al.  Carpe Diem: A Novel Approach to Select Representative Days for Long-Term Power System Models with High Shares of Renewable Energy Sources , 2014 .

[48]  M. Strubegger,et al.  User's Guide for MESSAGE III , 1995 .

[49]  Henry D. Jacoby,et al.  Experiments with a Hybrid CGE-MARKAL Model1 , 2006 .

[50]  Jianhua Chen,et al.  A Robust Wind Power Optimization Method for Look-Ahead Power Dispatch , 2014, IEEE Transactions on Sustainable Energy.

[51]  Christoph Weber,et al.  The future of the European electricity system and the impact of fluctuating renewable energy – A scenario analysis , 2014 .

[52]  Sergey Paltsev,et al.  The MIT Emissions Prediction and Policy Analysis (EPPA) Model: Version 4 , 2005 .

[53]  Kristian Lindgren,et al.  A critical assessment of energy-economy-climate models , 2012 .

[54]  N. V. Beeck Classification of Energy Models , 1999 .

[55]  B. Guinot,et al.  Evaluation multicritère des technologies de stockage couplées aux énergies renouvelables : conception et réalisation de la plateforme de simulation ODYSSEY pour l'optimisation du dimensionnement et de la gestion énergétique , 2013 .

[56]  Mark Horridge,et al.  Searching for Triple Dividends in South Africa: Fighting CO2 pollution and poverty while promoting growth , 2006 .

[57]  Dominique Finon Optimisation model for the French energy sector , 1974 .

[58]  Christian von Hirschhausen,et al.  A Large-Scale Spatial Optimization Model of the European Electricity Market , 2012 .

[59]  Nate Blair,et al.  Regional Energy Deployment System (ReEDS) , 2011 .

[60]  M. Wise,et al.  An integrated assessment of climate change and the accelerated introduction of advanced energy technologies , 1997 .

[61]  M. Wietschel,et al.  Impact of renewable energies on conventional power generation technologies and infrastructures from a long-term least-cost perspective , 2012, 2012 9th International Conference on the European Energy Market.

[62]  Florian Leuthold,et al.  ELMOD - A Model of the European Electricity Market , 2008 .

[63]  Thomas Huld,et al.  Medium-term demand for European cross-border electricity transmission capacity , 2013 .

[64]  Jean Charles Hourcade,et al.  Macroeconomic Consistency issues in E3 Modeling: The Continued Fable of the Elephant and the Rabbit , 2006 .

[65]  Dennis Anderson,et al.  Combining Energy Technology Dynamics and Macroeconometrics: The E3MG Model , 2006 .

[66]  Stéphanie Bouckaert,et al.  Contribution des Smart Grids à la transition énergétique : évaluation dans des scénarios long terme , 2013 .

[67]  Matthias Fripp,et al.  Switch: a planning tool for power systems with large shares of intermittent renewable energy. , 2012, Environmental science & technology.

[68]  Mikiko Kainuma,et al.  The AIM/end-use model and its application to forecast Japanese carbon dioxide emissions , 2000, Eur. J. Oper. Res..

[69]  B. Chateau,et al.  The medee models for long term energy demand forecasting , 1981 .

[70]  E. Denny,et al.  The impact of electricity storage on wholesale electricity prices , 2013 .

[71]  Florian Steinke,et al.  Managing Temporary Oversupply from Renewables Eciently: Electricity Storage Versus Energy Sector Coupling in Germany , 2013 .

[72]  Leo Schrattenholzer,et al.  MESSAGE-MACRO: Linking an energy supply model with a macroeconomic module and solving it iteratively , 2000 .