Bifurcation analysis of a periodically forced relaxation oscillator: differential model versus phase-resetting map.

We compare the dynamics of the periodically forced FitzHugh-Nagumo oscillator in its relaxation regime to that of a one-dimensional discrete map of the circle derived from the phase-resetting response of this oscillator (the "phase-resetting map"). The forcing is a periodic train of Gaussian-shaped pulses, with the width of the pulses much shorter than the intrinsic period of the oscillator. Using numerical continuation techniques, we compute bifurcation diagrams for the periodic solutions of the full differential equations, with the stimulation period being the bifurcation parameter. The period-1 solutions, which belong either to isolated loops or to an everywhere-unstable branch in the bifurcation diagram at sufficiently small stimulation amplitudes, merge together to form a single branch at larger stimulation amplitudes. As a consequence of the fast-slow nature of the oscillator, this merging occurs at virtually the same stimulation amplitude for all the period-1 loops. Again using continuation, we show that this stimulation amplitude corresponds, in the circle map, to a change of topological degree from one to zero. We explain the origin of this coincidence, and also discuss the translational symmetry properties of the bifurcation diagram.

[1]  Balth. van der Pol,et al.  VII. Forced oscillations in a circuit with non-linear resistance. (Reception with reactive triode) , 1927 .

[2]  Bruce B. Peckham,et al.  Lighting Arnold flames: Resonance in doubly forced periodic oscillators , 2002 .

[3]  Shinji Doi,et al.  A Bonhoeffer-van der Pol oscillator model of locked and non-locked behaviors of living pacemaker neurons , 1993, Biological Cybernetics.

[4]  J. Ross,et al.  A detailed study of a forced chemical oscillator: Arnol'd tongues and bifurcation sets , 1989 .

[5]  Dimitrios I. Fotiadis,et al.  Phase response characteristics of sinoatrial node cells , 2007, Comput. Biol. Medicine.

[6]  Shinji Doi,et al.  Global bifurcation structure of a Bonhoeffer-van der Pol oscillator driven by periodic pulse trains , 2004, Biological Cybernetics.

[7]  K. Bonhoeffer ACTIVATION OF PASSIVE IRON AS A MODEL FOR THE EXCITATION OF NERVE , 1948, The Journal of general physiology.

[8]  S. Coombes,et al.  Period-adding bifurcations and chaos in a periodically stimulated excitable neural relaxation oscillator. , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[9]  H. Othmer,et al.  Subharmonic resonance and chaos in forced excitable systems , 1999, Journal of mathematical biology.

[10]  Leon Glass,et al.  Bistability, period doubling bifurcations and chaos in a periodically forced oscillator , 1982 .

[11]  Taishin Nomura,et al.  SYNTHETIC ANALYSIS OF PERIODICALLY STIMULATED EXCITABLE AND OSCILLATORY MEMBRANE MODELS , 1999 .

[12]  Norio Akamatsu,et al.  Chaotically transitional phenomena in the forced negative-resistance oscillator , 1980 .

[13]  E. Atlee Jackson,et al.  Perspectives of nonlinear dynamics: Contents , 1990 .

[14]  L. Glass Synchronization and rhythmic processes in physiology , 2001, Nature.

[15]  H. Kawakami,et al.  Bifurcation structure of fractional harmonic entrainments in the forced Rayleigh oscillator , 2004 .

[16]  K. Tomita,et al.  Chaotic response of a limit cycle , 1979 .

[17]  G. P. Moore,et al.  Pacemaker Neurons: Effects of Regularly Spaced Synaptic Input , 1964, Science.

[18]  Structure of the parameter space for the van der Pol oscillator , 1988 .

[19]  John Guckenheimer,et al.  The Forced van der Pol Equation I: The Slow Flow and Its Bifurcations , 2003, SIAM J. Appl. Dyn. Syst..

[20]  Bruce B. Peckham,et al.  The necessity of the Hopf bifurcation for periodically forced oscillators , 1990 .

[21]  R. FitzHugh Impulses and Physiological States in Theoretical Models of Nerve Membrane. , 1961, Biophysical journal.

[22]  L. Glass,et al.  UNIVERSALITY AND SELF-SIMILARITY IN THE BIFURCATIONS OF CIRCLE MAPS , 1985 .

[23]  Michael R Guevara,et al.  Phase resetting, phase locking, and bistability in the periodically driven saline oscillator: experiment and model. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  Balth. van der Pol Jun. LXXXVIII. On “relaxation-oscillations” , 1926 .

[25]  Glass,et al.  Periodic forcing of a limit-cycle oscillator: Fixed points, Arnold tongues, and the global organization of bifurcations. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[26]  Milos Dolnik,et al.  Resonance behaviour in two-parameter families of periodically forced oscillators , 1988 .

[27]  John Guckenheimer,et al.  Numerical Computation of Canards , 2000, Int. J. Bifurc. Chaos.

[28]  M. Kawato Transient and steady state phase response curves of limit cycle oscillators , 1982 .

[29]  Richard McGehee,et al.  ARNOLD FLAMES AND RESONANCE SURFACE FOLDS , 1996 .

[30]  Diego L. González,et al.  Chaos in a Nonlinear Driven Oscillator with Exact Solution , 1983 .

[31]  Ding Ej Structure of parameter space for a prototype nonlinear oscillator. , 1987 .

[32]  A. Winfree The geometry of biological time , 1991 .

[33]  M Delmar,et al.  Phase resetting and entrainment of pacemaker activity in single sinus nodal cells. , 1991, Circulation research.

[34]  O. Piro,et al.  One-dimensional poincare map for a non-linear driven oscillator: Analytical derivation and geometrical properties , 1984 .

[35]  L. Glass,et al.  Global bifurcations of a periodically forced biological oscillator , 1984 .

[36]  Hans G. Othmer,et al.  On the resonance structure in a forced excitable system , 1990 .

[37]  R. Pérez,et al.  Fine Structure of Phase Locking , 1982 .

[38]  Gonzalez,et al.  Phase locking, period doubling, and chaotic phenomena in externally driven excitable systems. , 1988, Physical review. A, General physics.

[39]  A numerical study of global bifurcations in chemical dynamics , 1987 .

[40]  L. Glass,et al.  A simple model for phase locking of biological oscillators , 1979, Journal of mathematical biology.

[41]  J. Ross,et al.  Generation of multiple attractors and nonequilibrium phase transitions , 1984 .

[42]  Aronson,et al.  Entrainment regions for periodically forced oscillators. , 1986, Physical review. A, General physics.

[43]  Maria E. Schonbek,et al.  Fitzhugh-nagumo Revisited: Types of bifurcations, Periodical Forcing and Stability Regions by a Lyapunov Functional , 2004, Int. J. Bifurc. Chaos.

[44]  Y. Nishikawa,et al.  Frequency Entrainment in a Self-Oscillatory System with Ex-ternal Force , 1960 .

[45]  Avinoam Rabinovitch,et al.  Fixed points of two-dimensional maps obtained under rapid stimulations , 2006 .

[46]  S Sato,et al.  Response characteristics of the BVP neuron model to periodic pulse inputs. , 1992, Mathematical biosciences.

[47]  L Glass,et al.  Phase locking, period doubling bifurcations and chaos in a mathematical model of a periodically driven oscillator: A theory for the entrainment of biological oscillators and the generation of cardiac dysrhythmias , 1982, Journal of mathematical biology.

[48]  H. A. Larrondo,et al.  Isochrones and the dynamics of kicked oscillators , 1989 .

[49]  Ulrich Parlitz,et al.  BIFURCATION STRUCTURE OF THE DRIVEN VAN DER POL OSCILLATOR , 1993 .

[50]  Glen R. Hall,et al.  Resonance Zones in Two-Parameter Families of Circle Homeomorphisms , 1984 .

[51]  H. Othmer,et al.  Resonance in excitable systems under step-function forcing: II. Subharmonic solutions and persistence , 1996 .

[52]  S Sato,et al.  The global bifurcation structure of the BVP neuronal model driven by periodic pulse trains. , 1995, Mathematical biosciences.

[53]  Hiroshi Kawakami,et al.  Bifurcation of periodic responses in forced dynamic nonlinear circuits: Computation of bifurcation values of the system parameters , 1984 .

[54]  Rutherford Aris,et al.  Some common features of periodically forced reacting systems , 1986 .

[55]  Alvin Shrier,et al.  Chaos in neurobiology , 1983, IEEE Transactions on Systems, Man, and Cybernetics.

[56]  G. B. Mindlin,et al.  Periodically kicked hard oscillators. , 1993, Chaos.

[57]  Knudsen,et al.  Generic bifurcation structures of Arnol'd tongues in forced oscillators. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[58]  Milos Dolnik,et al.  Dynamics of forced excitable and oscillatory chemical reaction systems , 1989 .

[59]  E. Cytrynbaum Periodic stimulus and the single cardiac cell-getting more out of 1D maps. , 2004, Journal of theoretical biology.

[60]  Ding Ej Analytic treatment of a driven oscillator with a limit cycle. , 1987 .

[61]  Friedman,et al.  Forced Bonhoeffer-van der Pol oscillator in its excited mode. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[62]  L Glass,et al.  Apparent discontinuities in the phase-resetting response of cardiac pacemakers. , 2004, Journal of theoretical biology.

[63]  H. Croisier,et al.  Continuation and bifurcation analysis of a periodically forced excitable system. , 2007, Journal of theoretical biology.

[64]  Kaplan,et al.  Subthreshold dynamics in periodically stimulated squid giant axons. , 1996, Physical review letters.

[65]  Frank Schilder,et al.  Computing Arnol′d tongue scenarios , 2007, J. Comput. Phys..

[66]  I. Kevrekidis,et al.  The stirred tank forced , 1986 .

[67]  John Guckenheimer,et al.  A Survey of Methods for Computing (un)Stable Manifolds of Vector Fields , 2005, Int. J. Bifurc. Chaos.

[68]  L Glass,et al.  Global bifurcations of a periodically forced nonlinear oscillator , 1984, Journal of mathematical biology.

[69]  M R Guevara,et al.  Phase resetting in a model of cardiac Purkinje fiber. , 1987, Biophysical journal.

[70]  L. Glass,et al.  Phase locking, period-doubling bifurcations, and irregular dynamics in periodically stimulated cardiac cells. , 1981, Science.

[71]  Tetsuya Yoshinaga,et al.  Period doubling bifurcation and chaos observed in regions of higher‐harmonic entrainment in the forced Rayleigh oscillator , 2000 .