Magnostics: Image-Based Search of Interesting Matrix Views for Guided Network Exploration

In this work we address the problem of retrieving potentially interesting matrix views to support the exploration of networks. We introduce Matrix Diagnostics (or Magnostics), following in spirit related approaches for rating and ranking other visualization techniques, such as Scagnostics for scatter plots. Our approach ranks matrix views according to the appearance of specific visual patterns, such as blocks and lines, indicating the existence of topological motifs in the data, such as clusters, bi-graphs, or central nodes. Magnostics can be used to analyze, query, or search for visually similar matrices in large collections, or to assess the quality of matrix reordering algorithms. While many feature descriptors for image analyzes exist, there is no evidence how they perform for detecting patterns in matrices. In order to make an informed choice of feature descriptors for matrix diagnostics, we evaluate 30 feature descriptors-27 existing ones and three new descriptors that we designed specifically for MAGNOSTICS-with respect to four criteria: pattern response, pattern variability, pattern sensibility, and pattern discrimination. We conclude with an informed set of six descriptors as most appropriate for Magnostics and demonstrate their application in two scenarios; exploring a large collection of matrices and analyzing temporal networks.

[1]  Jing Huang,et al.  Image indexing using color correlograms , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[2]  Tom Drummond,et al.  Faster and Better: A Machine Learning Approach to Corner Detection , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  Leland Wilkinson,et al.  The Grammar of Graphics (Statistics and Computing) , 2005 .

[4]  Innar Liiv,et al.  Seriation and matrix reordering methods: An historical overview , 2010, Stat. Anal. Data Min..

[5]  Daniel A. Keim,et al.  Pixnostics: Towards Measuring the Value of Visualization , 2006, 2006 IEEE Symposium On Visual Analytics Science And Technology.

[6]  Fatih Korkmaz,et al.  Feedback-driven interactive exploration of large multidimensional data supported by visual classifier , 2014, 2014 IEEE Conference on Visual Analytics Science and Technology (VAST).

[7]  Robert Kosara,et al.  Pargnostics: Screen-Space Metrics for Parallel Coordinates , 2010, IEEE Transactions on Visualization and Computer Graphics.

[8]  Daniel A. Keim,et al.  Guided Sketching for Visual Search and Exploration in Large Scatter Plot Spaces , 2014, EuroVA@EuroVis.

[9]  Dirk J. Lehmann,et al.  Visualnostics: Visual Guidance Pictograms for Analyzing Projections of High‐dimensional Data , 2015, Comput. Graph. Forum.

[10]  Marcus A. Magnor,et al.  Improving the visual analysis of high-dimensional datasets using quality measures , 2010, 2010 IEEE Symposium on Visual Analytics Science and Technology.

[11]  Daniel A. Keim,et al.  Separating the wheat from the chaff: identifying relevant and similar performance data with visual analytics , 2015, VPA '15.

[12]  Ian T. Young,et al.  An Analysis Technique for Biological Shape. I , 1974, Inf. Control..

[13]  Robert M. Haralick,et al.  Textural Features for Image Classification , 1973, IEEE Trans. Syst. Man Cybern..

[14]  GeversTheo,et al.  Evaluating Color Descriptors for Object and Scene Recognition , 2010 .

[15]  Tobias Schreck,et al.  Retrieval and exploratory search in multivariate research data repositories using regressional features , 2011, JCDL '11.

[16]  Ricardo Baeza-Yates,et al.  Modern Information Retrieval - the concepts and technology behind search, Second edition , 2011 .

[17]  Mathias Lux,et al.  Lire: lucene image retrieval: an extensible java CBIR library , 2008, ACM Multimedia.

[18]  Andrew Lumsdaine,et al.  Interpreting large visual similarity matrices , 2007, 2007 6th International Asia-Pacific Symposium on Visualization.

[19]  Robert L. Grossman,et al.  Graph-Theoretic Scagnostics , 2005, INFOVIS.

[20]  Andrew Zisserman,et al.  Representing shape with a spatial pyramid kernel , 2007, CIVR '07.

[21]  Chee Sun Won,et al.  Efficient use of local edge histogram descriptor , 2000, MULTIMEDIA '00.

[22]  Kpalma Kidiyo,et al.  A Survey of Shape Feature Extraction Techniques , 2008 .

[23]  Yiannis S. Boutalis,et al.  FCTH: Fuzzy Color and Texture Histogram - A Low Level Feature for Accurate Image Retrieval , 2008, 2008 Ninth International Workshop on Image Analysis for Multimedia Interactive Services.

[24]  Matthew O. Ward,et al.  Clutter Reduction in Multi-Dimensional Data Visualization Using Dimension Reordering , 2004, IEEE Symposium on Information Visualization.

[25]  Akio Yamada,et al.  The MPEG-7 color layout descriptor: a compact image feature description for high-speed image/video segment retrieval , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[26]  Shih-Fu Chang,et al.  Image Retrieval: Current Techniques, Promising Directions, and Open Issues , 1999, J. Vis. Commun. Image Represent..

[27]  W. B. Marks,et al.  Fractal methods and results in cellular morphology — dimensions, lacunarity and multifractals , 1996, Journal of Neuroscience Methods.

[28]  Marko Heikkilä,et al.  A texture-based method for modeling the background and detecting moving objects , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[29]  Daniel A. Keim,et al.  Subspace search and visualization to make sense of alternative clusterings in high-dimensional data , 2012, 2012 IEEE Conference on Visual Analytics Science and Technology (VAST).

[30]  Luc Van Gool,et al.  Speeded-Up Robust Features (SURF) , 2008, Comput. Vis. Image Underst..

[31]  Tamara Munzner,et al.  DimStiller: Workflows for dimensional analysis and reduction , 2010, 2010 IEEE Symposium on Visual Analytics Science and Technology.

[32]  Marcus A. Magnor,et al.  Automated Analytical Methods to Support Visual Exploration of High-Dimensional Data , 2011, IEEE Transactions on Visualization and Computer Graphics.

[33]  Marcel Worring,et al.  Content-Based Image Retrieval at the End of the Early Years , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[34]  Rafael C. González,et al.  Local Determination of a Moving Contrast Edge , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[35]  Jean-Daniel Fekete,et al.  NodeTrix: a Hybrid Visualization of Social Networks , 2007, IEEE Transactions on Visualization and Computer Graphics.

[36]  Jean-Daniel Fekete,et al.  Matrix Reordering Methods for Table and Network Visualization , 2016, Comput. Graph. Forum.

[37]  Ben Shneiderman,et al.  A Rank-by-Feature Framework for Unsupervised Multidimensional Data Exploration Using Low Dimensional Projections , 2004, IEEE Symposium on Information Visualization.

[38]  Daniel A. Keim,et al.  Guiding the Exploration of Scatter Plot Data Using Motif-Based Interest Measures , 2015, 2015 Big Data Visual Analytics (BDVA).

[39]  Hideyuki Tamura,et al.  Textural Features Corresponding to Visual Perception , 1978, IEEE Transactions on Systems, Man, and Cybernetics.

[40]  Mathias Lux,et al.  Callisto : Tag Recommendations by Image Content , 2010 .

[41]  Koen E. A. van de Sande,et al.  Evaluating Color Descriptors for Object and Scene Recognition , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[42]  Enrico Bertini,et al.  Quality Metrics in High-Dimensional Data Visualization: An Overview and Systematization , 2011, IEEE Transactions on Visualization and Computer Graphics.

[43]  Chee Sun Won Feature Extraction and Evaluation Using Edge Histogram Descriptor in MPEG-7 , 2004, PCM.

[44]  Yiannis S. Boutalis,et al.  CEDD: Color and Edge Directivity Descriptor: A Compact Descriptor for Image Indexing and Retrieval , 2008, ICVS.

[45]  Alan J. Dix,et al.  A Taxonomy of Clutter Reduction for Information Visualisation , 2007, IEEE Transactions on Visualization and Computer Graphics.

[46]  Matthew O. Ward,et al.  Clutter Reduction in Multi-Dimensional Data Visualization Using Dimension Reordering , 2004 .

[47]  Kai-Kuang Ma,et al.  Fuzzy color histogram and its use in color image retrieval , 2002, IEEE Trans. Image Process..

[48]  Adv , 2019, International Journal of Pediatrics and Adolescent Medicine.