The two-dimensional Keller-Segel model after blow-up
暂无分享,去创建一个
[1] J. J. L. Velázquez,et al. Point Dynamics in a Singular Limit of the Keller--Segel Model 1: Motion of the Concentration Regions , 2004, SIAM J. Appl. Math..
[2] J. J. L. Velázquez,et al. Point Dynamics in a Singular Limit of the Keller--Segel Model 2: Formation of the Concentration Regions , 2004, SIAM J. Appl. Math..
[3] L. Segel,et al. Initiation of slime mold aggregation viewed as an instability. , 1970, Journal of theoretical biology.
[4] C. Schmeiser,et al. Global existence for chemotaxis with finite sampling radius , 2006 .
[5] Juan J. L. Velázquez. Well-posedness of a model of point dynamics for a limit of the Keller-Segel system , 2004 .
[6] W. Jäger,et al. On explosions of solutions to a system of partial differential equations modelling chemotaxis , 1992 .
[7] José A. Carrillo,et al. Infinite Time Aggregation for the Critical Patlak-Keller-Segel model in R 2 , 2007 .
[8] F. Poupaud,et al. Diagonal Defect Measures, Adhesion Dynamics and Euler Equation , 2002 .
[9] Benoît Perthame,et al. Two-dimensional Keller-Segel model: Optimal critical mass and qualitative properties of the solutions , 2006 .
[10] C. Patlak. Random walk with persistence and external bias , 1953 .
[11] Manuel del Pino,et al. Best constants for Gagliardo–Nirenberg inequalities and applications to nonlinear diffusions☆ , 2002 .
[12] Thomas Hillen,et al. Global Existence for a Parabolic Chemotaxis Model with Prevention of Overcrowding , 2001, Adv. Appl. Math..
[13] B. Perthame,et al. Kinetic Models for Chemotaxis and their Drift-Diffusion Limits , 2004 .
[14] Michael Loss,et al. Competing symmetries, the logarithmic HLS inequality and Onofri's inequality onsn , 1992 .
[15] Benoît Perthame,et al. Optimal critical mass in the two dimensional Keller–Segel model in R2 , 2004 .
[16] M. A. Herrero,et al. A blow-up mechanism for a chemotaxis model , 1997 .
[17] P. Laurençot,et al. The $8\pi$-problem for radially symmetric solutions of a chemotaxis model in a disc , 2006 .
[18] P. Laurençot,et al. The 8π‐problem for radially symmetric solutions of a chemotaxis model in the plane , 2006 .
[19] Christian Schmeiser,et al. The Keller-Segel Model with Logistic Sensitivity Function and Small Diffusivity , 2005, SIAM J. Appl. Math..
[20] Marion Kee,et al. Analysis , 2004, Machine Translation.