Absolute Organic Crystal Thermodynamics: Growth of the Asymmetric Unit into a Crystal via Alchemy.

The solubility of organic molecules is of critical importance to the pharmaceutical industry; however, robust computational methods to predict this quantity from first-principles are lacking. Solubility can be computed from a thermodynamic cycle that decomposes standard state solubility into the sum of solid–vapor sublimation and vapor–liquid solvation free energies ΔGsolubility° = ΔGsub° + ΔGsolv°. Over the past few decades, alchemical simulation methods to compute solvation free energy using classical force fields have become widely used. However, analogous methods for determining the free energy of the sublimation/deposition phase transition are currently limited by the necessity of a priori knowledge of the atomic coordinates of the crystal. Here, we describe progress toward an alternative scheme based on growth of the asymmetric unit into a crystal via alchemy (GAUCHE). GAUCHE computes deposition free energy ΔGdep° = −ΔGsub° = −kBT ln(Vc/Vg) + ΔGAU + ΔGAU→UC as the sum of an entropic term to account ...

[1]  Michael R. Shirts,et al.  Extremely precise free energy calculations of amino acid side chain analogs: Comparison of common molecular mechanics force fields for proteins , 2003 .

[2]  T. Darden,et al.  Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems , 1993 .

[3]  K. Dill,et al.  On the use of orientational restraints and symmetry corrections in alchemical free energy calculations. , 2006, The Journal of chemical physics.

[4]  M. Alderton,et al.  Distributed multipole analysis , 2006 .

[5]  T. Darden,et al.  A smooth particle mesh Ewald method , 1995 .

[6]  Celeste Sagui,et al.  Towards an accurate representation of electrostatics in classical force fields: efficient implementation of multipolar interactions in biomolecular simulations. , 2004, The Journal of chemical physics.

[7]  Claire S. Adjiman,et al.  Towards crystal structure prediction of complex organic compounds – a report on the fifth blind test , 2011, Acta crystallographica. Section B, Structural science.

[8]  John B. O. Mitchell,et al.  Predicting intrinsic aqueous solubility by a thermodynamic cycle. , 2008, Molecular pharmaceutics.

[9]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[10]  M. Haisa,et al.  The Monoclinic Form of p‐Hydroxyacetanilide , 1976 .

[11]  Jean-Philip Piquemal,et al.  Modeling Organochlorine Compounds and the σ-Hole Effect Using a Polarizable Multipole Force Field , 2014, The journal of physical chemistry. B.

[12]  David L. Mobley,et al.  Alchemical prediction of hydration free energies for SAMPL , 2012, Journal of Computer-Aided Molecular Design.

[13]  Tu C Le,et al.  Aqueous solubility prediction: do crystal lattice interactions help? , 2013, Molecular pharmaceutics.

[14]  K. Doll Implementation of analytical Hartree-Fock gradients for periodic systems , 2001, physics/0102049.

[15]  W. Sherman,et al.  Prediction of Absolute Solvation Free Energies using Molecular Dynamics Free Energy Perturbation and the OPLS Force Field. , 2010, Journal of chemical theory and computation.

[16]  W. L. Jorgensen,et al.  Prediction of drug solubility from structure. , 2002, Advanced drug delivery reviews.

[17]  Andrew S. Paluch,et al.  Efficient Solvation Free Energy Calculations of Amino Acid Analogs by Expanded Ensemble Molecular Simulation. , 2011, Journal of chemical theory and computation.

[18]  S. Grimme Density functional theory with London dispersion corrections , 2011 .

[19]  M Karplus,et al.  The contribution of vibrational entropy to molecular association. The dimerization of insulin. , 1994, Journal of molecular biology.

[20]  Anthony J Stone,et al.  Distributed Multipole Analysis:  Stability for Large Basis Sets. , 2005, Journal of chemical theory and computation.

[21]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[22]  A. Bauer-Brandl,et al.  Polymorphism of paracetamol , 2007 .

[23]  Yue Shi,et al.  Multipole electrostatics in hydration free energy calculations , 2011, J. Comput. Chem..

[24]  M. Schnieders,et al.  Polarizable atomic multipole X-ray refinement: weighting schemes for macromolecular diffraction. , 2011, Acta crystallographica. Section D, Biological crystallography.

[25]  Bartolomeo Civalleri,et al.  Hartree–Fock geometry optimisation of periodic systems with the Crystal code , 2001 .

[26]  Pengyu Y. Ren,et al.  Consistent treatment of inter‐ and intramolecular polarization in molecular mechanics calculations , 2002, J. Comput. Chem..

[27]  R. Fletcher,et al.  A New Approach to Variable Metric Algorithms , 1970, Comput. J..

[28]  D. Goldfarb A family of variable-metric methods derived by variational means , 1970 .

[29]  Pengyu Y. Ren,et al.  Temperature and Pressure Dependence of the AMOEBA Water Model , 2004 .

[30]  C. Brown Further refinement of the crystal structure of acetanilide , 1966 .

[31]  T. Darden,et al.  Towards a force field based on density fitting. , 2006, The Journal of chemical physics.

[32]  Vijay S Pande,et al.  Polarizable Atomic Multipole X-Ray Refinement: Particle Mesh Ewald Electrostatics for Macromolecular Crystals. , 2011, Journal of chemical theory and computation.

[33]  Nohad Gresh,et al.  Anisotropic, Polarizable Molecular Mechanics Studies of Inter- and Intramolecular Interactions and Ligand-Macromolecule Complexes. A Bottom-Up Strategy. , 2007, Journal of chemical theory and computation.

[34]  John B. O. Mitchell,et al.  First-Principles Calculation of the Intrinsic Aqueous Solubility of Crystalline Druglike Molecules. , 2012, Journal of chemical theory and computation.

[35]  Terry P. Lybrand,et al.  Hydration of chloride and bromide anions: determination of relative free energy by computer simulation , 1985 .

[36]  W. L. Jorgensen,et al.  Monte Carlo simulation of differences in free energies of hydration , 1985 .

[37]  Analytical Hartree-Fock gradients for periodic systems , 2000, cond-mat/0011285.

[38]  David Eisenberg,et al.  Molecular basis for amyloid-β polymorphism , 2011, Proceedings of the National Academy of Sciences.

[39]  B. Hudson,et al.  Importance of Vibrational Zero-Point Energy Contribution to the Relative Polymorph Energies of Hydrogen-Bonded Species , 2008 .

[40]  C. G. Broyden The Convergence of a Class of Double-rank Minimization Algorithms 1. General Considerations , 1970 .

[41]  Andrew S. Paluch,et al.  Efficient Estimation of the Equilibrium Solution-Phase Fugacity of Soluble Nonelectrolyte Solids in Binary Solvents by Molecular Simulation , 2013 .

[42]  Robert A. Grothe,et al.  Structure of the cross-β spine of amyloid-like fibrils , 2005, Nature.

[43]  Wei Yang,et al.  Practically Efficient and Robust Free Energy Calculations: Double-Integration Orthogonal Space Tempering. , 2012, Journal of chemical theory and computation.

[44]  T. Windus,et al.  O + C2H4 potential energy surface: lowest-lying singlet at the multireference level , 2012, Theoretical Chemistry Accounts.

[45]  J. Pople,et al.  Self‐Consistent Molecular‐Orbital Methods. IX. An Extended Gaussian‐Type Basis for Molecular‐Orbital Studies of Organic Molecules , 1971 .

[46]  Himanshu Aggarwal,et al.  Crystal Structure of Methyl Paraben Polymorph II , 2011 .

[47]  M. Alderton,et al.  Distributed multipole analysis Methods and applications , 1985 .

[48]  Wei Yang,et al.  The Structure, Thermodynamics and Solubility of Organic Crystals from Simulation with a Polarizable Force Field. , 2012, Journal of chemical theory and computation.

[49]  D. Shanno Conditioning of Quasi-Newton Methods for Function Minimization , 1970 .

[50]  Wei Yang,et al.  Simultaneous escaping of explicit and hidden free energy barriers: application of the orthogonal space random walk strategy in generalized ensemble based conformational sampling. , 2009, The Journal of chemical physics.

[51]  Wei Yang,et al.  Random walk in orthogonal space to achieve efficient free-energy simulation of complex systems , 2008, Proceedings of the National Academy of Sciences.

[52]  Charles L. Brooks,et al.  λ‐dynamics: A new approach to free energy calculations , 1996 .

[53]  P Verwer,et al.  A test of crystal structure prediction of small organic molecules. , 2000, Acta crystallographica. Section B, Structural science.

[54]  A. Bauer-Brandl,et al.  Towards an understanding of the molecular mechanism of solvation of drug molecules: a thermodynamic approach by crystal lattice energy, sublimation, and solubility exemplified by paracetamol, acetanilide, and phenacetin. , 2006, Journal of pharmaceutical sciences.

[55]  Margaret E. Johnson,et al.  Current status of the AMOEBA polarizable force field. , 2010, The journal of physical chemistry. B.

[56]  Pengyu Y. Ren,et al.  Polarizable Atomic Multipole-based Molecular Mechanics for Organic Molecules. , 2011, Journal of chemical theory and computation.

[57]  Bartolomeo Civalleri,et al.  CRYSTAL: a computational tool for the ab initio study of the electronic properties of crystals , 2005 .

[58]  A. Bauer-Brandl,et al.  Influence of Position and Size of Substituents on the Mechanism of Partitioning: A Thermodynamic Study on Acetaminophens, Hydroxybenzoic Acids, and Parabens , 2008, AAPS PharmSciTech.

[59]  J. V. Lenthe,et al.  State of the Art in Counterpoise Theory , 1994 .

[60]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[61]  Pengyu Y. Ren,et al.  Polarizable Atomic Multipole Water Model for Molecular Mechanics Simulation , 2003 .