Uncertainty of Plutonium Isotopic Measurements with Microcalorimeter and High-Purity Germanium Detectors

The nondestructive assay (NDA) of plutonium-bearing materials using gamma-ray spectroscopy supports global nuclear nonproliferation and safeguards efforts. High-purity germanium (HPGe) detectors have been used for this application for decades, but the uncertainty limit remains around 1% relative error for measured isotope ratios, an order of magnitude larger than destructive assay. To lower NDA uncertainty limits, we are pursuing new measurement technology using superconducting microcalorimeter detectors, and assessing the sources of current uncertainty limits. We compare results from analysis of plutonium isotopic standards using HPGe and microcalorimeter detectors, and find lower random error for the microcalorimeter data. Uncertainties in the reference values of constants of nature contribute to the total measurement error. For one particular set of constants, the gamma-ray energies, we find that microcalorimeter analysis is much less sensitive (more than a factor of ten) to the uncertainty in nuclear data than HPGe.

[1]  B. Alpert,et al.  A high resolution gamma-ray spectrometer based on superconducting microcalorimeters. , 2012, The Review of scientific instruments.

[2]  J Morel,et al.  Results of the international Pu-2000 exercise for plutonium isotopic composition measurements. , 2004, Applied radiation and isotopes : including data, instrumentation and methods for use in agriculture, industry and medicine.

[3]  Stephan Friedrich,et al.  Nuclear diagnostics with cryogenic spectrometers , 2007 .

[4]  D. T. Vo,et al.  Determination of Plutonium Isotopic Content by Microcalorimeter Gamma-Ray Spectroscopy , 2013, IEEE Transactions on Nuclear Science.

[5]  H. O. Menlove,et al.  HENC performance evaluation and plutonium calibration , 1997 .

[6]  P. Mortreau,et al.  Measurement of photon mass attenuation coefficients of plutonium from 60 to 2615 keV , 2007 .

[7]  W. Marsden I and J , 2012 .

[8]  T. E. Sampson,et al.  Statistical evaluation of FRAM γ-ray isotopic analysis data , 2005 .

[9]  Matts Roos,et al.  MINUIT-a system for function minimization and analysis of the parameter errors and correlations , 1984 .

[10]  D. K. Trubey,et al.  Photon cross sections for ENDF/B-VI , 1989 .

[11]  T. E. Sampson,et al.  FRAM: A versatile code for analyzing the isotopic composition of plutonium from gamma-ray pulse height spectra , 1989 .

[12]  M. R. Bhat,et al.  Evaluated Nuclear Structure Data File (ENSDF) , 1992 .

[13]  E. Kessler,et al.  X-ray transition energies: new approach to a comprehensive evaluation , 2003 .

[14]  J. H. Hubbell,et al.  Photon mass attenuation and energy-absorption coefficients , 1982 .

[15]  W. B. Doriese,et al.  Large-Area Microcalorimeter Detectors for Ultra-High-Resolution X-Ray and Gamma-Ray Spectroscopy , 2009, IEEE Transactions on Nuclear Science.

[16]  B. Alpert,et al.  Note: Operation of gamma-ray microcalorimeters at elevated count rates using filters with constraints. , 2013, The Review of scientific instruments.

[17]  M. Krause,et al.  Natural widths of atomic K and L levels, Kα X‐ray lines and several KLL Auger lines , 1979 .

[18]  S. I. Salem,et al.  Experimental K and L relative x-ray emission ratess , 1974 .

[19]  W. B. Doriese,et al.  Large microcalorimeter arrays for high-resolution X- and gamma-rayspectroscopy , 2011 .

[20]  R. Gunnink,et al.  The MGA code for the determination of the isotopic composition of plutonium and MOX by gamma spectrometry — A performance study , 1996 .