Low voltage, low power, compact, high accuracy, high precision PTAT temperature sensor for deep sub-micron CMOS systems

Temperature measurement is becoming increasingly important in integrated circuits and microsystems; nevertheless, existing techniques for the integration of high accuracy, high precision temperature sensors are not optimal for deep sub-micron CMOS processes. Here we describe a low voltage, low power, compact, high accuracy, high precision temperature sensor for deep sub-micron CMOS systems; our approach takes advantage of charge balancing and charge sharing for low current consumption, does not use resistors for compactness, and takes advantage of both PTAT and autozero techniques for high accuracy and high precision; the circuit can be operated at low supply voltages. As a proof of concept, we report transistor level simulations in a standard 0.13 mum process; the sensor only sinks about 6 muA from a 1.2 V supply voltage, achieving a power dissipation as low as 7.2 muW.

[1]  G. Meijer Integrated circuits and components for bandgap references and temperature transducers , 1982 .

[2]  Gerard C. M. Meijer Thermal sensors based on transistors , 1986 .

[3]  Willy Sansen,et al.  A CMOS temperature-compensated current reference , 1988 .

[4]  Gabor C. Temes,et al.  Circuit techniques for reducing the effects of op-amp imperfections: autozeroing, correlated double sampling, and chopper stabilization , 1996, Proc. IEEE.

[5]  M. Tuthill,et al.  A switched current, switched capacitor temperature sensor in 0.6u CMOS , 1998, Proceedings of the 23rd European Solid-State Circuits Conference.

[6]  M. Tuthill A switched-current, switched-capacitor temperature sensor in 0.6-/spl mu/m CMOS , 1998 .

[7]  Fabiano Fruett,et al.  The piezojunction effect in NPN and PNP vertical transistors and its influence on silicon temperature sensors , 2000 .

[8]  A. Bakker,et al.  High-Accuracy CMOS Smart Temperature Sensors , 2000 .

[9]  F. Van Steenkiste,et al.  A CMOS multi-parameter biochemical microsensor with temperature control and signal interfacing , 2001, 2001 IEEE International Solid-State Circuits Conference. Digest of Technical Papers. ISSCC (Cat. No.01CH37177).

[10]  G.C.M. Meijer,et al.  The piezojunction effect in silicon sensors and circuits and its relation to piezoresistance , 2001, IEEE Sensors Journal.

[11]  Fabiano Fruett,et al.  The Piezojunction Effect in Silicon Integrated Circuits and Sensors , 2002 .

[12]  Johan H. Huijsing,et al.  A CMOS smart temperature sensor with a 3 sigm Inaccuracy of +-0.5 deg C from -50 deg C to 120 deg C , 2005 .

[13]  Carlos Galup-Montoro,et al.  A 2-nW 1.1-V self-biased current reference in CMOS technology , 2005, IEEE Transactions on Circuits and Systems II: Express Briefs.

[14]  Kofi A. A. Makinwa,et al.  A CMOS smart temperature sensor with a 3σ inaccuracy of ±0.1°C from -55°C to 125°C , 2005, IEEE J. Solid State Circuits.

[15]  Johan H. Huijsing,et al.  Precision Temperature Sensors in CMOS Technology , 2006 .

[16]  Piero Malcovati,et al.  CMOS-Based Monolithic Controllers for Smart Sensors Comprising Micromembranes and Microcantilevers , 2007, IEEE Transactions on Circuits and Systems I: Regular Papers.

[17]  Andrea Baschirotto,et al.  Electronic interfaces , 2007 .

[18]  Giuseppe Scotti,et al.  Low Voltage CMOS Current and Voltage References without Resistors , 2007, 2007 IEEE International Symposium on Circuits and Systems.

[19]  Enrico Dallago,et al.  Self-Supplied Integrable Active High-Efficiency AC-DC Converter for Piezoelectric Energy Scavenging Systems , 2007, 2007 IEEE International Symposium on Circuits and Systems.

[20]  Christian Falconi,et al.  CMOS microsystems temperature control , 2008 .

[21]  Kofi A. A. Makinwa,et al.  A CMOS smart temperature sensor with a batch-calibrated inaccuracy of ±0.25°C (3σ) from −70°C to 130°C , 2009, 2009 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.