Dielectric filter optimal design suitable for microwave communications by using multiobjective evolutionary algorithms

A multiobjective evolutionary technique is applied to design dielectric filters useful in microwave communications technology. The optimal geometry of the filters is derived by utilizing two different multiobjective optimization algorithms. The first one is the Nondominated Sorting Genetic Algorithm-II (NSGA-II), which is a popular multiobjective genetic algorithm. The second algorithm is based on multiobjective Particle Swarm Optimization with fitness sharing (MOPSO-fs). MOPSO-fs algorithm is a novel Pareto PSO algorithm that produces the Pareto front in a fast and efficient way. In the present work, MOPSO-fs is compared with NSGA-II to optimize the geometry of the filters under specific requirements concerning the frequency response of the filters. Several examples are studied to exhibit the efficiency of the multiobjective evolutionary optimizers and also the ability of the technique to derive optimal structures that can be used in practice. © 2007 Wiley Periodicals, Inc. Microwave Opt Technol Lett 49: 2324–2329, 2007; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/mop.22755

[1]  Zita Vale,et al.  Optimal short-term contract allocation using particle swarm optimization , 2005 .

[2]  Kai Chang,et al.  Slow-wave bandpass filters using ring or stepped-impedance hairpin resonators , 2002 .

[3]  W. Chew Waves and Fields in Inhomogeneous Media , 1990 .

[4]  Wen Wang,et al.  Arbitrary planar microwave filter design by the EEM‐GA approach , 2004 .

[5]  Kai Chang,et al.  Microstrip Elliptic-Function Low-Pass Filters Using Distributed Elements or Slotted Ground Structure , 2006, IEEE Transactions on Microwave Theory and Techniques.

[6]  R. S. Chen,et al.  Combination of particle‐swarm optimization with least‐squares support vector machine for FDTD time series forecasting , 2006 .

[7]  Jose Basterrechea,et al.  Particle‐swarm optimization and its application to antenna far‐field‐pattern prediction from planar scanning , 2005 .

[8]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[9]  Jae Yeong Park,et al.  A compact integrated band‐pass filter on a low‐dielectric constant polyimide dry film , 2004 .

[10]  Chien‐Jen Wang,et al.  A microstrip Filter Utilized in Ultra-Wideband Antennas , 2004 .

[11]  Jiří Horák,et al.  Multiband planar antennas on electromagnetic bandgap substrates: Complex global optimization of the structure , 2006 .

[12]  Yahya Rahmat-Samii,et al.  Shaped‐reflector antenna designs using particle swarm optimization: An example of a direct‐broadcast satellite antenna , 2006 .

[13]  Essam A. Hashish,et al.  Full‐wave analysis of a new designed wide band microstrip filter using the novel method of lines , 2007 .

[14]  T. Ray,et al.  Multilayer dielectric filter design using a multiobjective evolutionary algorithm , 2005, IEEE Transactions on Antennas and Propagation.

[15]  Jonathan E. Rowe,et al.  Particle swarm optimization and fitness sharing to solve multi-objective optimization problems , 2005, 2005 IEEE Congress on Evolutionary Computation.

[16]  Kerim Guney,et al.  New wide‐aperture‐dimension formula obtained by using a particle swarm optimization for optimum gain pyramidal horns , 2006 .

[17]  Ahmed A. Kishk,et al.  Improved particle swarm optimization technique using hard boundary conditions , 2005 .

[18]  Dong-Hoon Shin,et al.  Fabrication of a band-reject filter using dielectric-supported air-gapped microstriplines , 2005 .

[19]  David E. Goldberg,et al.  Genetic Algorithms with Sharing for Multimodalfunction Optimization , 1987, ICGA.

[20]  Albert Chin,et al.  Study of parallel coupled‐line microstrip filter in broadband , 2006 .

[21]  Sotirios K. Goudos,et al.  A versatile software tool for microwave planar radar absorbing materials design using global optimization algorithms , 2007 .

[22]  Andrea Massa,et al.  Optimized synthesis of a miniaturized SARSAT band pre‐fractal antenna , 2006 .

[23]  Kai Chang,et al.  Tunable microstrip bandpass filters with two transmission zeros , 2003 .

[24]  Shanjia Xu,et al.  E‐plane waveguide filters with partially filled dielectrics for wide bandwidth , 2001 .

[25]  Kai Chang,et al.  Compact elliptic-function low-pass filters using microstrip stepped-impedance hairpin resonators , 2003 .

[26]  Jia-Sheng Hong,et al.  An optimum ultra‐wideband microstrip filter , 2005 .

[27]  Kai Chang,et al.  Novel compact elliptic-function narrow-band bandpass filters using microstrip open-loop resonators with coupled and crossing lines , 1998 .

[28]  Raj Mittra,et al.  Design of microwave filters using a binary-coded genetic algorithm , 2000 .

[29]  D.S. Weile,et al.  Pareto optimal design of absorbers using a parallel elitist nondominated sorting genetic algorithm and the finite element-boundary integral method , 2005, IEEE Transactions on Antennas and Propagation.

[30]  Eliathamby Ambikairajah,et al.  Microstrip filter design using FDTD and neural networks , 2002 .

[31]  Peng Cai,et al.  A two-pole 900/1800-MHz microstrip filter for dual-band applications , 2006 .

[32]  Tsung-Hui Huang,et al.  A compact hairpin bandpass filter on high-permittivity dielectrics using a tape-casting technique , 2004 .

[33]  Chi Hou Chan,et al.  A jumping genes paradigm for the design of wide‐band patch antenna with double shorting wall , 2007 .

[34]  Min-Hua Ho,et al.  Design of microstrip filter and diplexer with a multiple harmonics suppression for mobile communication , 2006 .

[35]  Zhi Ning Chen,et al.  A two‐layer compact electromagnetic bandgap (EBG) structure and its applications in microstrip filter design , 2003 .

[36]  Roberto Sorrentino,et al.  Parasitic suppression in high-Q-factor dielectric loaded cavity filters , 2002 .

[37]  Andrea Massa,et al.  Particle‐swarm‐optimizer‐based optimization of matching loads for lossy transmission lines , 2006 .

[38]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[39]  Russell C. Eberhart,et al.  A discrete binary version of the particle swarm algorithm , 1997, 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation.

[40]  Ana I. Pereira,et al.  Particle swarm and simulated annealing for multi-global optimization , 2005 .

[41]  Daehyun Kang,et al.  A planar-type dielectric resonator and filter using LTCC process , 2007 .

[42]  Andy Yang,et al.  Compact 5.8-GHz bandpass filter using stepped-impedance dielectric resonators for ISM band wireless communication , 2005 .

[43]  Jaehoon Choi,et al.  A small bandstop microstrip filter for UWB applications , 2006 .

[44]  David E. Goldberg,et al.  Genetic algorithm design of Pareto optimal broadband microwave absorbers , 1996 .

[45]  Kai Chang,et al.  Compact microstrip bandstop filter using open stub and spurline , 2005 .

[46]  Jian Wang,et al.  TM010 dielectric loaded cavity resonator for microwave filter , 2004 .

[47]  Jhin-Fang Huang,et al.  Design and implementation of a dualband microwave filter using nonuniform lines , 2007 .

[48]  Kai Chang,et al.  Compact microstrip low-pass filter with sharp rejection , 2005 .

[49]  Yao‐Chung Chen,et al.  A compact bandpass filter using dielectric resonators for cellular portable telephones , 2001 .

[50]  Kai Chang,et al.  Compact, low insertion-loss, sharp-rejection, and wide-band microstrip bandpass filters , 2003 .

[51]  Sotirios K. Goudos,et al.  Microwave absorber optimal design using multi‐objective particle swarm optimization , 2006 .

[52]  Kai Chang,et al.  Stub-tuned microstrip bandpass filters for millimeter-wave diplexer design , 2005 .

[53]  F Bilotti,et al.  A novel design method for tapered strip lines as microwave filters , 2000 .

[54]  Carlos A. Coello Coello,et al.  Handling multiple objectives with particle swarm optimization , 2004, IEEE Transactions on Evolutionary Computation.

[55]  Jinhui Zhu,et al.  Electromagnetic optimization using a mixed‐parameter self‐adaptive evolutionary algorithm , 2003 .