Almost isometric embedding between metric spaces

We investigate the relations ofalmost isometric embedding and ofalmost isometry between metric spaces.These relations have several appealing features. For example, all isomorphism types of countable dense subsets of ∝ form exactly one almostisometry class, and similarly with countable dense subsets of Uryson's universal separable metric spaceU.We investigate geometric, set-theoretic and model-theoretic aspects of almost isometry and of almost isometric embedding.The main results show that almost isometric embeddability behaves in the category ofseparable metric spaces differently than in the category of general metric spaces. While in the category of general metric spaces the behavior of universality resembles that in the category of linear orderings —namely, no universal structure can exist on a regular λ > ℵ1 below the continuum—in the category of separable metric spaces universality behaves more like that in the category of graphs, that is, a small number of metric separable metric spaces on an uncountable regular λ<2ℵ0 may consistently almost isometrically embed all separable metric spaces on λ.

[1]  Su Gao,et al.  Polish metric spaces: their classification and isometry groups , 2001, Bull. Symb. Log..

[2]  Saharon Shelah Independence Results , 1980, J. Symb. Log..

[3]  Su Gao,et al.  On the classification of Polish metric spaces up to isometry , 2003 .

[4]  Saharon Shelah,et al.  Universal graphs without instances of CH: Revisited , 1990 .

[5]  Saharon Shelah,et al.  Independence of strong partition relation for small cardinals, and the free-subset problem , 1980, Journal of Symbolic Logic (JSL).

[6]  S. Thomas CARDINAL ARITHMETIC (Oxford Logic Guides 29) , 1997 .

[7]  James E. Baumgartner,et al.  Αll $ℵ_1$-dense sets of reals can be isomorphic , 1973 .

[8]  James E. Baumgartner,et al.  Almost disjoint sets, the dense set problem and the partition calculus , 1976 .

[9]  M. Hrusák,et al.  Countable dense homogeneity of definable spaces , 2004, math/0402442.

[10]  Universal abelian groups , 1994, math/9409207.

[11]  Saharon Shelah,et al.  Universal graphs at the successor of a singular cardinal , 2001, Journal of Symbolic Logic.

[12]  Alan H. Mekler Universal structures in power ℵ1 , 1990 .

[13]  Saharon Shelah,et al.  On universal graphs without instances of CH , 1984, Ann. Pure Appl. Log..

[14]  Saharon Shelah,et al.  The Universality Spectrum of Stable Unsuperstable Theories , 1992, Ann. Pure Appl. Log..

[15]  Mirna Dzamonja On uniform Eberlein compacta and c-algebras , 1998 .

[16]  M. Gromov Metric Structures for Riemannian and Non-Riemannian Spaces , 1999 .

[17]  Anatolii Moiseevich Vershik,et al.  The universal Urysohn space, Gromov metric triples and random metrics on the natural numbers , 1998 .

[18]  Анатолий Моисеевич Вершик,et al.  Универсальное пространство Урысона, метрические тройки Громова и случайные метрики на натуральном ряде@@@The universal Urysohn space, Gromov metric triples and random metrics on the natural numbers , 1998 .

[19]  Menachem Kojman,et al.  Representing Embeddability as Set Inclusion , 1995, math/9507212.

[20]  Saharon Shelah,et al.  Nonexistence of universal orders in many cardinals , 1992, Journal of Symbolic Logic.

[21]  W. Hugh Woodin,et al.  The Continuum Hypothesis, Part I , 2001 .