Covering and piercing disks with two centers

We consider new versions of the two-center problem where the input consists of a set $\mathcal{D}$ of disks in the plane. We first study the problem of finding two smallest congruent disks such that each disk in $\mathcal{D}$ intersects one of these two disks. Then we study the problem of covering the set $\mathcal{D}$ by two smallest congruent disks. We give exact and approximation algorithms for these versions.

[1]  Timothy M. Chan More planar two-center algorithms , 1999, Comput. Geom..

[2]  David Eppstein,et al.  Faster construction of planar two-centers , 1997, SODA '97.

[3]  Bernd Gärtner,et al.  The smallest enclosing ball of balls: combinatorial structure and algorithms , 2003, SCG '03.

[4]  Ketan Mulmuley,et al.  Computational geometry : an introduction through randomized algorithms , 1993 .

[5]  Nimrod Megiddo On the ball spanned by balls , 1989, Discret. Comput. Geom..

[6]  Maarten Löffler,et al.  Largest bounding box, smallest diameter, and related problems on imprecise points , 2007, Comput. Geom..

[7]  Timothy M. Chan Deterministic algorithms for 2-d convex programming and 3-d online linear programming , 1997, SODA '97.

[8]  Kyung-Yong Chwa,et al.  Two-center problems for a convex polygon , 1998 .

[9]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[10]  Micha Sharir,et al.  A Combinatorial Bound for Linear Programming and Related Problems , 1992, STACS.

[11]  Michael T. Goodrich,et al.  Fixed-dimensional parallel linear programming via relative ε-approximations , 1996, SODA '96.

[12]  Zvi Drezner,et al.  The Planar Two-Center and Two-Median Problems , 1984, Transp. Sci..

[13]  Pankaj K. Agarwal,et al.  Exact and Approximation Algortihms for Clustering , 1997 .

[14]  Kenneth L. Clarkson,et al.  Las Vegas algorithms for linear and integer programming when the dimension is small , 1995, JACM.

[15]  Kyung-Yong Chwa,et al.  Two-Center Problems for a Convex Polygon (Extended Abstract) , 1998, ESA.

[16]  Sivan Toledo,et al.  Applications of parametric searching in geometric optimization , 1992, SODA '92.

[17]  Teofilo F. GONZALEZ,et al.  Clustering to Minimize the Maximum Intercluster Distance , 1985, Theor. Comput. Sci..