Content Based Description of Audio in the Context of AXMEDIS

The enormous growth of digital music databases has led to a comparable growth in the need for methods that help users organize and access such information. One area in particular that has seen much recent research activity is the use of automated techniques to describe audio content and to allow its identification, browsing and retrieval. This paper presents algorithms for audio content analysis, description and identification that are developed and implemented in the context of the AXMEDIS project

[1]  Ton Kalker,et al.  A Highly Robust Audio Fingerprinting System , 2002, ISMIR.

[2]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[3]  R. Parncutt A Perceptual Model of Pulse Salience and Metrical Accent in Musical Rhythms , 1994 .

[4]  Douglas Eck,et al.  Frame-Level Speech/Music Discrimination using AdaBoost , 2005 .

[5]  R. Jackendoff,et al.  A Generative Theory of Tonal Music , 1985 .

[6]  Hervé Bourlard,et al.  Speech/music segmentation using entropy and dynamism features in a HMM classification framework , 2003, Speech Commun..

[7]  Markus Cremer,et al.  Scalable robust audio fingerprinting using MPEG-7 content description , 2002, 2002 IEEE Workshop on Multimedia Signal Processing..

[8]  Norman Casagrande Frame-Level Speech/Music Discrimination using AdaBoost , 2005 .

[9]  George Tzanetakis,et al.  Panel: New directions in Music Information Retrieval , 2001, International Conference on Mathematics and Computing.

[10]  Pedro Cano,et al.  A review of algorithms for audio fingerprinting , 2002, 2002 IEEE Workshop on Multimedia Signal Processing..

[11]  Aymeric Zils,et al.  EXTRACTING AUTOMATICALLY THE PERCEIVED INTENSITY OF MUSIC TITLES , 2003 .

[12]  Thomas Sikora,et al.  Comparison of MPEG-7 audio spectrum projection features and MFCC applied to speaker recognition, sound classification and audio segmentation , 2004, 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[13]  Ton Kalker,et al.  An efficient database search strategy for audio fingerprinting , 2002, 2002 IEEE Workshop on Multimedia Signal Processing..

[14]  Pedro Cano,et al.  Audio Fingerprinting: Concepts and Application , 2002, FSKD.

[15]  Samy Bengio,et al.  A Parallel Mixture of SVMs for Very Large Scale Problems , 2001, Neural Computation.

[16]  Simon Dixon,et al.  A Review of Automatic Rhythm Description Systems , 2005, Computer Music Journal.

[17]  Jonathan Foote,et al.  Automatic audio segmentation using a measure of audio novelty , 2000, 2000 IEEE International Conference on Multimedia and Expo. ICME2000. Proceedings. Latest Advances in the Fast Changing World of Multimedia (Cat. No.00TH8532).

[18]  Beth Logan,et al.  Mel Frequency Cepstral Coefficients for Music Modeling , 2000, ISMIR.

[19]  George Tzanetakis,et al.  An experimental comparison of audio tempo induction algorithms , 2006, IEEE Transactions on Audio, Speech, and Language Processing.

[20]  Pierfrancesco Bellini,et al.  AUTOMATED MULTI-CHANNEL CROSS-MEDIA PRODUCTION AND DISTRIBUTION , 2005 .

[21]  François Pachet,et al.  A taxonomy of musical genres , 2000, RIAO.

[22]  Jaakko Astola,et al.  Analysis of the meter of acoustic musical signals , 2006, IEEE Transactions on Audio, Speech, and Language Processing.

[23]  Samy Bengio,et al.  Semi-supervised meeting event recognition with adapted HMMs , 2005, 2005 IEEE International Conference on Multimedia and Expo.

[24]  Biing-Hwang Juang,et al.  Fundamentals of speech recognition , 1993, Prentice Hall signal processing series.

[25]  Nicolas Scaringella,et al.  A MIXTURE OF SUPPORT VECTOR MACHINES FOR AUDIO CLASSIFICATION , 2005 .

[26]  Jeff A. Bilmes,et al.  A gentle tutorial of the em algorithm and its application to parameter estimation for Gaussian mixture and hidden Markov models , 1998 .

[27]  N. Scaringella,et al.  Automatic genre classification of music content: a survey , 2006, IEEE Signal Process. Mag..

[28]  Lawrence R. Rabiner,et al.  A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.

[29]  Jürgen Herre,et al.  Robust matching of audio signals using spectral flatness features , 2001, Proceedings of the 2001 IEEE Workshop on the Applications of Signal Processing to Audio and Acoustics (Cat. No.01TH8575).

[30]  Giorgio Zoia,et al.  On the Modeling of Time Information for Automatic Genre Recognition Systems in Audio Signals , 2005, ISMIR.

[31]  Emmanuel Vincent,et al.  The 2005 Music Information retrieval Evaluation Exchange (MIREX 2005): Preliminary Overview , 2005, ISMIR.

[32]  Pedro Cano,et al.  Audio Fingerprinting: Concepts And Applications , 2005, Computational Intelligence for Modelling and Prediction.

[33]  M. Fabbri,et al.  Keyword extraction in open-domain multilingual textual resources , 2005, First International Conference on Automated Production of Cross Media Content for Multi-Channel Distribution (AXMEDIS'05).