The Mixture Transition Distribution Model for High-Order Markov Chains and Non-Gaussian Time Series
暂无分享,去创建一个
[1] C. Domb. Order-disorder statistics. I , 1949, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.
[2] R. B. Potts,et al. Order-disorder statistics IV. A two-dimensional model with first and second interactions , 1951, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.
[3] L. Katz,et al. The concept of configuration of interpersonal relations in a group as a time-dependent stochastic process , 1959 .
[4] Patrick Billingsley,et al. Statistical inference for Markov processes , 1961 .
[5] P. Holgate. Estimation for the bivariate Poisson distribution , 1964 .
[6] J. Kemeny,et al. Denumerable Markov chains , 1969 .
[7] H. Theil. On the Estimation of Relationships Involving Qualitative Variables , 1970, American Journal of Sociology.
[8] N. L. Johnson,et al. Distributions in Statistics: Discrete Distributions. , 1970 .
[9] L. Baum,et al. An inequality and associated maximization technique in statistical estimation of probabilistic functions of a Markov process , 1972 .
[10] Donald B. Rubin,et al. Max-imum Likelihood from Incomplete Data , 1972 .
[11] G. Grimmett. A THEOREM ABOUT RANDOM FIELDS , 1973 .
[12] J. Besag. Spatial Interaction and the Statistical Analysis of Lattice Systems , 1974 .
[13] J. Besag. Statistical Analysis of Non-Lattice Data , 1975 .
[14] John H. Holland,et al. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .
[15] P. Holland,et al. Discrete Multivariate Analysis. , 1976 .
[16] John G. Kemeny,et al. Finite Markov chains , 1960 .
[17] E. H. Lloyd. Reservoirs with Seasonally Varying Markovian Inflows and Their First Passage Times , 1977 .
[18] D. Rubin,et al. Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .
[19] J. Besag. Efficiency of pseudolikelihood estimation for simple Gaussian fields , 1977 .
[20] Peter A. W. Lewis,et al. Discrete time series generated by mixtures III: Autoregressive processes (DAR(p)) , 1978 .
[21] G. Schwarz. Estimating the Dimension of a Model , 1978 .
[22] Peter A. W. Lewis,et al. Discrete Time Series Generated by Mixtures Ii: Asymptotic Properties , 1978 .
[23] Peter A. W. Lewis,et al. Discrete Time Series Generated by Mixtures. I: Correlational and Runs Properties , 1978 .
[24] J. Laurie Snell,et al. Markov Random Fields and Their Applications , 1980 .
[25] G. G. S. Pegram,et al. An autoregressive model for multilag Markov chains , 1980, Journal of Applied Probability.
[26] S. Karlin,et al. A second course in stochastic processes , 1981 .
[27] R. Katz. On Some Criteria for Estimating the Order of a Markov Chain , 1981 .
[28] J. Logan,et al. A structural model of the higher‐order Markov process incorporating reversion effects , 1981 .
[29] R. Engle. Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation , 1982 .
[30] Sheldon M. Ross,et al. Stochastic Processes , 2018, Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics.
[31] Peter A. W. Lewis,et al. STATIONARY DISCRETE AUTOREGRESSIVE‐MOVING AVERAGE TIME SERIES GENERATED BY MIXTURES , 1983 .
[32] M. .. Moore. Exactly Solved Models in Statistical Mechanics , 1983 .
[33] T. Rao,et al. An Introduction to Bispectral Analysis and Bilinear Time Series Models , 1984 .
[34] J. R. M. Hosking,et al. FRACTIONAL DIFFERENCING MODELING IN HYDROLOGY , 1985 .
[35] A. Raftery. A model for high-order Markov chains , 1985 .
[36] Jonathan D. Cryer,et al. Time Series Analysis , 1986 .
[37] T. Bollerslev,et al. Generalized autoregressive conditional heteroskedasticity , 1986 .
[38] S. Zeger,et al. Longitudinal data analysis using generalized linear models , 1986 .
[39] K Y Liang,et al. Longitudinal data analysis for discrete and continuous outcomes. , 1986, Biometrics.
[40] Ludwig Fahrmeir,et al. REGRESSION MODELS FOR NON‐STATIONARY CATEGORICAL TIME SERIES , 1987 .
[41] Adrian E. Raftery,et al. Comment: Robustness, Computation, and Non-Euclidean Models , 1987 .
[42] S. Adke,et al. Limit Distribution of a High Order Markov Chain , 1988 .
[43] Peter S. Craig,et al. Time Series Analysis for Directional Data , 1988 .
[44] M. J. R. Healy. GLIM: An Introduction , 1988 .
[45] Some results on higher order Markov Chain models , 1988 .
[46] S. Zeger,et al. Markov regression models for time series: a quasi-likelihood approach. , 1988, Biometrics.
[47] ANALYSIS OF DISCRETE LONGITUDINAL DATA: INFINITE-LAG MARKOV MODELS , 1989 .
[48] John Hinde,et al. Statistical Modelling in GLIM. , 1989 .
[49] F. Mehran. Longitudinal Analysis of Employment and Unemployment Based on Matched Rotation Samples , 1989 .
[50] D. Hofmann,et al. Reply to comments , 1990 .
[51] John Hinde,et al. Statistical Modelling in GLIM. , 1990 .
[52] A. Raftery,et al. Stopping the Gibbs Sampler,the Use of Morphology,and Other Issues in Spatial Statistics (Bayesian image restoration,with two applications in spatial statistics) -- (Discussion) , 1991 .
[53] R. Chou,et al. ARCH modeling in finance: A review of the theory and empirical evidence , 1992 .
[54] Michael Green,et al. The GLIM system : release 4 manual , 1993 .
[55] A. Raftery,et al. Estimation and Modelling Repeated Patterns in High Order Markov Chains with the Mixture Transition Distribution Model , 1994 .
[56] L. Fahrmeir,et al. Multivariate statistical modelling based on generalized linear models , 1994 .
[57] Brian D. Marx,et al. Multivariate Statistical Modelling Based on Generalized Linear Models (Ludwig Fahrmeir and Gerhard Tutz) , 1995, SIAM Rev..
[58] A. Berchtold. Autoregressive Modelling of Markov Chains , 1995 .
[59] Meir Feder,et al. A universal finite memory source , 1995, IEEE Trans. Inf. Theory.
[60] P. Diggle. Analysis of Longitudinal Data , 1995 .
[61] Peter Green,et al. Markov chain Monte Carlo in Practice , 1996 .
[62] A. Raftery,et al. Modeling flat stretches, bursts, and outliers in time series using mixture transition distribution models , 1996 .
[63] G. McLachlan,et al. The EM algorithm and extensions , 1996 .
[64] Nan M. Laird,et al. Longitudinal panel data: an overview of current methodology , 1996 .
[65] A. Berchtold. Modélisation autorégressive des chaînes de Markov : Utilisation d'une matrice différente pour chaque retard , 1996 .
[66] Sylvia Richardson,et al. Markov Chain Monte Carlo in Practice , 1997 .
[67] Lain L. MacDonald,et al. Hidden Markov and Other Models for Discrete- valued Time Series , 1997 .
[68] Joseph L Schafer,et al. Analysis of Incomplete Multivariate Data , 1997 .
[69] A. Berchtold. The double chain markov model , 1999 .
[70] A. Berchtold. The Double Chain Markov M O D E L , 1999 .
[71] P. Bühlmann,et al. Variable Length Markov Chains: Methodology, Computing, and Software , 2004 .
[72] David Maxwell Chickering,et al. Dependency Networks for Inference, Collaborative Filtering, and Data Visualization , 2000, J. Mach. Learn. Res..
[73] John Odentrantz,et al. Markov Chains: Gibbs Fields, Monte Carlo Simulation, and Queues , 2000, Technometrics.
[74] A. Berchtold,et al. Estimation of the Mixture Transition Distribution Model , 1999 .
[75] A. Berchtold. High-order extensions of the Double Chain Markov Model , 2002 .
[76] Eric R. Ziegel,et al. Multivariate Statistical Modelling Based on Generalized Linear Models , 2002, Technometrics.