The Mixture Transition Distribution Model for High-Order Markov Chains and Non-Gaussian Time Series

The mixture transition distribution model (MTD) was introduced in 1985 by Raftery for the modeling of high-order Markov chains with a finite state space. Since then it has been generalized and successfully applied to a range of situations, including the analysis of wind directions, DNA sequences and social behavior. Here we review the MTD model and the developments since 1985. We first introduce the basic principle and then we present several extensions, including general state spaces and spatial statistics. Following that, we review methods for estimating the model parameters. Finally, a review of different types of applications shows the practical interest of the MTD model.

[1]  C. Domb Order-disorder statistics. I , 1949, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[2]  R. B. Potts,et al.  Order-disorder statistics IV. A two-dimensional model with first and second interactions , 1951, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[3]  L. Katz,et al.  The concept of configuration of interpersonal relations in a group as a time-dependent stochastic process , 1959 .

[4]  Patrick Billingsley,et al.  Statistical inference for Markov processes , 1961 .

[5]  P. Holgate Estimation for the bivariate Poisson distribution , 1964 .

[6]  J. Kemeny,et al.  Denumerable Markov chains , 1969 .

[7]  H. Theil On the Estimation of Relationships Involving Qualitative Variables , 1970, American Journal of Sociology.

[8]  N. L. Johnson,et al.  Distributions in Statistics: Discrete Distributions. , 1970 .

[9]  L. Baum,et al.  An inequality and associated maximization technique in statistical estimation of probabilistic functions of a Markov process , 1972 .

[10]  Donald B. Rubin,et al.  Max-imum Likelihood from Incomplete Data , 1972 .

[11]  G. Grimmett A THEOREM ABOUT RANDOM FIELDS , 1973 .

[12]  J. Besag Spatial Interaction and the Statistical Analysis of Lattice Systems , 1974 .

[13]  J. Besag Statistical Analysis of Non-Lattice Data , 1975 .

[14]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[15]  P. Holland,et al.  Discrete Multivariate Analysis. , 1976 .

[16]  John G. Kemeny,et al.  Finite Markov chains , 1960 .

[17]  E. H. Lloyd Reservoirs with Seasonally Varying Markovian Inflows and Their First Passage Times , 1977 .

[18]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[19]  J. Besag Efficiency of pseudolikelihood estimation for simple Gaussian fields , 1977 .

[20]  Peter A. W. Lewis,et al.  Discrete time series generated by mixtures III: Autoregressive processes (DAR(p)) , 1978 .

[21]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[22]  Peter A. W. Lewis,et al.  Discrete Time Series Generated by Mixtures Ii: Asymptotic Properties , 1978 .

[23]  Peter A. W. Lewis,et al.  Discrete Time Series Generated by Mixtures. I: Correlational and Runs Properties , 1978 .

[24]  J. Laurie Snell,et al.  Markov Random Fields and Their Applications , 1980 .

[25]  G. G. S. Pegram,et al.  An autoregressive model for multilag Markov chains , 1980, Journal of Applied Probability.

[26]  S. Karlin,et al.  A second course in stochastic processes , 1981 .

[27]  R. Katz On Some Criteria for Estimating the Order of a Markov Chain , 1981 .

[28]  J. Logan,et al.  A structural model of the higher‐order Markov process incorporating reversion effects , 1981 .

[29]  R. Engle Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation , 1982 .

[30]  Sheldon M. Ross,et al.  Stochastic Processes , 2018, Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics.

[31]  Peter A. W. Lewis,et al.  STATIONARY DISCRETE AUTOREGRESSIVE‐MOVING AVERAGE TIME SERIES GENERATED BY MIXTURES , 1983 .

[32]  M. .. Moore Exactly Solved Models in Statistical Mechanics , 1983 .

[33]  T. Rao,et al.  An Introduction to Bispectral Analysis and Bilinear Time Series Models , 1984 .

[34]  J. R. M. Hosking,et al.  FRACTIONAL DIFFERENCING MODELING IN HYDROLOGY , 1985 .

[35]  A. Raftery A model for high-order Markov chains , 1985 .

[36]  Jonathan D. Cryer,et al.  Time Series Analysis , 1986 .

[37]  T. Bollerslev,et al.  Generalized autoregressive conditional heteroskedasticity , 1986 .

[38]  S. Zeger,et al.  Longitudinal data analysis using generalized linear models , 1986 .

[39]  K Y Liang,et al.  Longitudinal data analysis for discrete and continuous outcomes. , 1986, Biometrics.

[40]  Ludwig Fahrmeir,et al.  REGRESSION MODELS FOR NON‐STATIONARY CATEGORICAL TIME SERIES , 1987 .

[41]  Adrian E. Raftery,et al.  Comment: Robustness, Computation, and Non-Euclidean Models , 1987 .

[42]  S. Adke,et al.  Limit Distribution of a High Order Markov Chain , 1988 .

[43]  Peter S. Craig,et al.  Time Series Analysis for Directional Data , 1988 .

[44]  M. J. R. Healy GLIM: An Introduction , 1988 .

[45]  Some results on higher order Markov Chain models , 1988 .

[46]  S. Zeger,et al.  Markov regression models for time series: a quasi-likelihood approach. , 1988, Biometrics.

[47]  ANALYSIS OF DISCRETE LONGITUDINAL DATA: INFINITE-LAG MARKOV MODELS , 1989 .

[48]  John Hinde,et al.  Statistical Modelling in GLIM. , 1989 .

[49]  F. Mehran Longitudinal Analysis of Employment and Unemployment Based on Matched Rotation Samples , 1989 .

[50]  D. Hofmann,et al.  Reply to comments , 1990 .

[51]  John Hinde,et al.  Statistical Modelling in GLIM. , 1990 .

[52]  A. Raftery,et al.  Stopping the Gibbs Sampler,the Use of Morphology,and Other Issues in Spatial Statistics (Bayesian image restoration,with two applications in spatial statistics) -- (Discussion) , 1991 .

[53]  R. Chou,et al.  ARCH modeling in finance: A review of the theory and empirical evidence , 1992 .

[54]  Michael Green,et al.  The GLIM system : release 4 manual , 1993 .

[55]  A. Raftery,et al.  Estimation and Modelling Repeated Patterns in High Order Markov Chains with the Mixture Transition Distribution Model , 1994 .

[56]  L. Fahrmeir,et al.  Multivariate statistical modelling based on generalized linear models , 1994 .

[57]  Brian D. Marx,et al.  Multivariate Statistical Modelling Based on Generalized Linear Models (Ludwig Fahrmeir and Gerhard Tutz) , 1995, SIAM Rev..

[58]  A. Berchtold Autoregressive Modelling of Markov Chains , 1995 .

[59]  Meir Feder,et al.  A universal finite memory source , 1995, IEEE Trans. Inf. Theory.

[60]  P. Diggle Analysis of Longitudinal Data , 1995 .

[61]  Peter Green,et al.  Markov chain Monte Carlo in Practice , 1996 .

[62]  A. Raftery,et al.  Modeling flat stretches, bursts, and outliers in time series using mixture transition distribution models , 1996 .

[63]  G. McLachlan,et al.  The EM algorithm and extensions , 1996 .

[64]  Nan M. Laird,et al.  Longitudinal panel data: an overview of current methodology , 1996 .

[65]  A. Berchtold Modélisation autorégressive des chaînes de Markov : Utilisation d'une matrice différente pour chaque retard , 1996 .

[66]  Sylvia Richardson,et al.  Markov Chain Monte Carlo in Practice , 1997 .

[67]  Lain L. MacDonald,et al.  Hidden Markov and Other Models for Discrete- valued Time Series , 1997 .

[68]  Joseph L Schafer,et al.  Analysis of Incomplete Multivariate Data , 1997 .

[69]  A. Berchtold The double chain markov model , 1999 .

[70]  A. Berchtold The Double Chain Markov M O D E L , 1999 .

[71]  P. Bühlmann,et al.  Variable Length Markov Chains: Methodology, Computing, and Software , 2004 .

[72]  David Maxwell Chickering,et al.  Dependency Networks for Inference, Collaborative Filtering, and Data Visualization , 2000, J. Mach. Learn. Res..

[73]  John Odentrantz,et al.  Markov Chains: Gibbs Fields, Monte Carlo Simulation, and Queues , 2000, Technometrics.

[74]  A. Berchtold,et al.  Estimation of the Mixture Transition Distribution Model , 1999 .

[75]  A. Berchtold High-order extensions of the Double Chain Markov Model , 2002 .

[76]  Eric R. Ziegel,et al.  Multivariate Statistical Modelling Based on Generalized Linear Models , 2002, Technometrics.