The maximum number of halving lines and the rectilinear crossing number of Kn for n

Abstract For n ⩽ 27 we present exact values for the maximum number h ( n ) of halving lines and h ˜ ( n ) of halving pseudolines, determined by n points in the plane. For this range of values of n we also present exact values of the rectilinear c r ¯ ( K n ) and the pseudolinear c r ˜ ( K n ) crossing numbers of the complete graph K n . h ˜ ( n ) and c r ˜ ( K n ) are new for n ∈ { 14 , 16 , 18 , 20 , 22 , 23 , 24 , 25 , 26 , 27 } , h ( n ) is new for n ∈ { 16 , 18 , 20 , 22 , 23 , 24 , 25 , 26 , 27 } , and c r ¯ ( K n ) is new for n ∈ { 20 , 22 , 23 , 24 , 25 , 26 , 27 } .

[1]  David Eppstein Sets of points with many halving lines , 1992 .

[2]  Géza Tóth Point Sets with Many k-Sets , 2001, Discret. Comput. Geom..

[3]  J. Pach Towards a Theory of Geometric Graphs , 2004 .

[4]  Richard Pollack,et al.  Proof of Grünbaum's Conjecture on the Stretchability of Certain Arrangements of Pseudolines , 1980, J. Comb. Theory, Ser. A.

[5]  Stephane Durocher,et al.  The Rectilinear Crossing Number of K10 is 62 , 2000, Electron. J. Comb..

[6]  Richard Pollack,et al.  On the Combinatorial Classification of Nondegenerate Configurations in the Plane , 1980, J. Comb. Theory, Ser. A.

[7]  Bernardo M. Ábrego,et al.  Geometric drawings of Kn with few crossings , 2007, J. Comb. Theory, Ser. A.

[8]  Alina Beygelzimer,et al.  On halving line arrangements , 2002, Discret. Math..

[9]  E. Welzl,et al.  Convex Quadrilaterals and k-Sets , 2003 .

[10]  Boris Aronov,et al.  Results on k-sets and j-facets via continuous motion , 1998, SCG '98.

[11]  János Pach,et al.  Research problems in discrete geometry , 2005 .

[12]  Oswin Aichholzer,et al.  New Lower Bounds for the Number of (≤ k)-Edges and the Rectilinear Crossing Number of Kn , 2007, Discret. Comput. Geom..

[13]  P. Erdös,et al.  Crossing Number Problems , 1973 .

[14]  József Balogh,et al.  An extended lower bound on the number of (k)-edges to generalized configurations of points and the pseudolinear crossing number of Kn , 2008, J. Comb. Theory, Ser. A.

[15]  Oswin Aichholzer,et al.  Abstract Order Type Extension and New Results on the Rectilinear Crossing Number - Extended Abstract , 2005 .

[16]  Richard K. Guy,et al.  Latest results on crossing numbers , 1971 .

[17]  P. Erdös,et al.  Dissection Graphs of Planar Point Sets , 1973 .

[18]  O. Aichholzer,et al.  On the Crossing Number of Complete Graphs , 2005, Computing.

[19]  Hisao Tamaki,et al.  A Characterization of Planar Graphs by Pseudo-Line Arrangements , 2003 .

[20]  Bernardo M. Ábrego,et al.  A Lower Bound for the Rectilinear Crossing Number , 2005, Graphs Comb..

[21]  Tamal K. Dey,et al.  Improved Bounds for Planar k -Sets and Related Problems , 1998, Discret. Comput. Geom..

[22]  . Ábrego,et al.  On ( ≤ k ) – pseudoedges in generalized configurations and the pseudolinear crossing number of K n B , 2006 .