Formulation and implementation of decohesion elements in an explicit finite element code

A decohesion element, with three different optional constitutive laws, has been implemented in an explicit finite element code. The formulation is fully three dimensional, and can simulate mixed-mode delamination. The first constitutive law is bilinear, the second is a third-order polynomial and the third is a combination of linear and polynomial segments. The bilinear law is found to be less stable than the others under certain numerical conditions. Application examples, including mixed-mode fracture, are presented for all constitutive laws.

[1]  Larsgunnar Nilsson,et al.  Modeling of delamination using a discretized cohesive zone and damage formulation , 2002 .

[2]  Alberto Corigliano,et al.  Geometrical and interfacial non-linearities in the analysis of delamination in composites , 1999 .

[3]  Larsgunnar Nilsson,et al.  Simulating DCB, ENF and MMB experiments using shell elements and a cohesive zone model , 2004 .

[4]  P. Camanho,et al.  Numerical Simulation of Mixed-Mode Progressive Delamination in Composite Materials , 2003 .

[5]  Michael R Wisnom,et al.  Modelling the Effect of Cracks on Interlaminar Shear Strength , 1996 .

[6]  Larsgunnar Nilsson,et al.  Simulation of low velocity impact on fiber laminates using a cohesive zone based delamination model , 2004 .

[7]  M. D. Moura,et al.  Mixed-Mode Decohesion Elements for Analyses of Progressive Delamination , 2001 .

[8]  Carlos G. Davila,et al.  An Irreversible Constitutive Law for Modeling the Delamination Process Using Interface Elements , 2002 .

[9]  Giulio Alfano,et al.  An interface element formulation for the simulation of delamination with buckling , 2001 .

[10]  Alastair Johnson,et al.  Computational methods for predicting impact damage in composite structures , 2001 .

[11]  P.M.S.T. de Castro,et al.  Prediction of compressive strength of carbon–epoxy laminates containing delamination by using a mixed-mode damage model , 2000 .

[12]  M. A. Crisfield,et al.  Progressive Delamination Using Interface Elements , 1998 .

[13]  M. Benzeggagh,et al.  Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus , 1996 .

[14]  S. Pinho,et al.  Numerical simulation of the crushing process of composite materials , 2004 .

[15]  A. K. Pickett,et al.  Review of Finite Element Simulation Methods Applied to Manufacturing and Failure Prediction in Composites Structures , 2002 .

[16]  M. Ortiz,et al.  FINITE-DEFORMATION IRREVERSIBLE COHESIVE ELEMENTS FOR THREE-DIMENSIONAL CRACK-PROPAGATION ANALYSIS , 1999 .

[17]  M. Crisfield,et al.  Analytical derivation of load/displacement relationship for the DCB and MMB and proof of the FEA formulation , 1996 .

[18]  J. Gonçalves,et al.  Elemento finito isoparamétrico de interface para problemas tridimensionais , 1996 .

[19]  J. G. Williams,et al.  Analytical solutions for cohesive zone models , 2002 .

[20]  Alberto Corigliano,et al.  Modeling and simulation of crack propagation in mixed-modes interlaminar fracture specimens , 1996 .

[21]  V. Tvergaard Effect of fibre debonding in a whisker-reinforced metal , 1990 .

[22]  Larsgunnar Nilsson,et al.  Simulation of delamination in fiber composites with a discrete cohesive failure model , 2001 .

[23]  M. Crisfield,et al.  Finite element interface models for the delamination analysis of laminated composites: mechanical and computational issues , 2001 .

[24]  P. Camanho,et al.  Mixed-Mode Decohesion Finite Elements for the Simulation of Delamination in Composite Materials , 2002 .