Solution-Processed Environmentally Friendly Ag2S Colloidal Quantum Dot Solar Cells with Broad Spectral Absorption

A facile heat-up synthesis route is used to synthesize environmentally friendly Ag2S colloidal quantum dots (CQDs) that are applied as light absorbing material in solid state p-i-n junction solar c ...

[1]  B. Saunders,et al.  Third-generation solar cells: a review and comparison of polymer:fullerene, hybrid polymer and perovskite solar cells , 2014 .

[2]  Jianbo Gao,et al.  PbSe quantum dot solar cells with more than 6% efficiency fabricated in ambient atmosphere. , 2014, Nano letters.

[3]  J. Bisquert,et al.  Core/shell colloidal quantum dot exciplex states for the development of highly efficient quantum-dot-sensitized solar cells. , 2013, Journal of the American Chemical Society.

[4]  J. Luther,et al.  Peak External Photocurrent Quantum Efficiency Exceeding 100% via MEG in a Quantum Dot Solar Cell , 2011, Science.

[5]  Arie Zaban,et al.  Quantum-dot-sensitized solar cells. , 2010, Chemphyschem : a European journal of chemical physics and physical chemistry.

[6]  Edward H. Sargent,et al.  Colloidal quantum dot solar cells on curved and flexible substrates , 2014 .

[7]  Wasim J. Mir,et al.  Origin of Unusual Excitonic Absorption and Emission from Colloidal Ag2S Nanocrystals: Ultrafast Photophysics and Solar Cell. , 2015, The journal of physical chemistry letters.

[8]  Yang Yang,et al.  Polymer solar cells , 2012, Nature Photonics.

[9]  X. Wen,et al.  Theoretical and Experimental Investigation of the Electronic Structure and Quantum Confinement of Wet-Chemistry Synthesized Ag2S Nanocrystals , 2015 .

[10]  G. Konstantatos,et al.  Solution-processed PbS quantum dot infrared photodetectors and photovoltaics , 2005, Nature materials.

[11]  J. Bisquert,et al.  High-efficiency "green" quantum dot solar cells. , 2014, Journal of the American Chemical Society.

[12]  Xiaoliang Zhang,et al.  Efficient charge-carrier extraction from Ag₂S quantum dots prepared by the SILAR method for utilization of multiple exciton generation. , 2015, Nanoscale.

[13]  Gregory D. Scholes,et al.  Colloidal PbS Nanocrystals with Size‐Tunable Near‐Infrared Emission: Observation of Post‐Synthesis Self‐Narrowing of the Particle Size Distribution , 2003 .

[14]  D. Ginley,et al.  Photovoltaic devices with a low band gap polymer and CdSe nanostructures exceeding 3% efficiency. , 2010, Nano letters.

[15]  Hongwei Hu,et al.  Photodeposition of Ag2S on TiO2 nanorod arrays for quantum dot-sensitized solar cells , 2013, Nanoscale Research Letters.

[16]  Slow recombination in quantum dot solid solar cell using p–i–n architecture with organic p-type hole transport material , 2015 .

[17]  Christoph J. Brabec,et al.  Performance Enhancement of the P3HT/PCBM Solar Cells through NIR Sensitization Using a Small‐Bandgap Polymer , 2012 .

[18]  Gou-Jen Wang,et al.  Ag2S quantum dot-sensitized solar cells , 2010 .

[19]  Vaidyanathan Subramanian,et al.  Quantum dot solar cells. harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films. , 2006, Journal of the American Chemical Society.

[20]  Edward H. Sargent,et al.  Interface Recombination in Depleted Heterojunction Photovoltaics based on Colloidal Quantum Dots , 2013 .

[21]  Ikerne Etxebarria,et al.  Solution-processable polymeric solar cells: A review on materials, strategies and cell architectures to overcome 10% , 2015 .

[22]  N. Vlachopoulos,et al.  ZnO@Ag2S core-shell nanowire arrays for environmentally friendly solid-state quantum dot-sensitized solar cells with panchromatic light capture and enhanced electron collection. , 2015, Physical chemistry chemical physics : PCCP.

[23]  Aram Amassian,et al.  Hybrid organic-inorganic inks flatten the energy landscape in colloidal quantum dot solids. , 2017, Nature materials.

[24]  Patrick R. Brown,et al.  p‐i‐n Heterojunction Solar Cells with a Colloidal Quantum‐Dot Absorber Layer , 2014, Advanced materials.

[25]  A. Nozik Quantum dot solar cells , 2002 .

[26]  G. Boschloo,et al.  Ambient air-processed mixed-ion perovskites for high-efficiency solar cells , 2016 .

[27]  Luping Yu,et al.  Recent Advances in Bulk Heterojunction Polymer Solar Cells. , 2015, Chemical reviews.

[28]  Aram Amassian,et al.  Efficient Spray‐Coated Colloidal Quantum Dot Solar Cells , 2015, Advanced materials.

[29]  Qiangbin Wang,et al.  Controlled Synthesis of Ag2S Quantum Dots and Experimental Determination of the Exciton Bohr Radius , 2014 .

[30]  Moungi G Bawendi,et al.  Improved current extraction from ZnO/PbS quantum dot heterojunction photovoltaics using a MoO3 interfacial layer. , 2011, Nano letters.

[31]  P. Kamat,et al.  Sequentially Layered CdSe/CdS Nanowire Architecture for Improved Nanowire Solar Cell Performance , 2014 .

[32]  Edward H. Sargent,et al.  Colloidal quantum dot photovoltaics: the effect of polydispersity. , 2012, Nano letters.

[33]  Xiaodan Hong,et al.  Recent advancements in perovskite solar cells: flexibility, stability and large scale , 2016 .

[34]  M. Bawendi,et al.  Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites , 1993 .

[35]  Yadong Li,et al.  A facile "dispersion-decomposition" route to metal sulfide nanocrystals. , 2011, Chemistry.

[36]  Xiaoliang Zhang,et al.  Solution processed flexible and bending durable heterojunction colloidal quantum dot solar cell. , 2015, Nanoscale.

[37]  O. Inganäs,et al.  An Easily Synthesized Blue Polymer for High‐Performance Polymer Solar Cells , 2010, Advanced materials.

[38]  A. Frueh The Crystallography of Silver Sulfide, Ag2S , 1958 .

[39]  Michael Grätzel,et al.  Nanostructured TiO2/CH3NH3PbI3 heterojunction solar cells employing spiro-OMeTAD/Co-complex as hole-transporting material , 2013 .

[40]  Anders Hagfeldt,et al.  Effect of Different Hole Transport Materials on Recombination in CH3NH3PbI3 Perovskite-Sensitized Mesoscopic Solar Cells. , 2013, The journal of physical chemistry letters.