TGF-beta isoform signaling regulates secondary transition and mesenchymal-induced endocrine development in the embryonic mouse pancreas.

[1]  W. D. Halliburton Handbook of physiology , 2007 .

[2]  F. Real,et al.  Transforming growth factor (TGF)beta, fibroblast growth factor (FGF) and retinoid signalling pathways promote pancreatic exocrine gene expression in mouse embryonic stem cells. , 2004, The Biochemical journal.

[3]  Jonas Larsson,et al.  Activin receptor-like kinase (ALK)1 is an antagonistic mediator of lateral TGFbeta/ALK5 signaling. , 2003, Molecular cell.

[4]  J. Massagué,et al.  Mechanisms of TGF-β Signaling from Cell Membrane to the Nucleus , 2003, Cell.

[5]  J. Soames,et al.  Mouse Model for Hereditary Hemorrhagic Telangiectasia Has a Generalized Vascular Abnormality , 2003, Circulation.

[6]  D. Harlan,et al.  Oligonucleotide Microarray Analysis of Intact Human Pancreatic Islets: Identification of Glucose-Responsive Genes and a Highly Regulated TGFβ Signaling Pathway , 2002 .

[7]  M. Goumans,et al.  Balancing the activation state of the endothelium via two distinct TGF‐β type I receptors , 2002, The EMBO journal.

[8]  Ondine Cleaver,et al.  Induction of Pancreatic Differentiation by Signals from Blood Vessels , 2001, Science.

[9]  A. Paterson,et al.  Potential role of modifier genes influencing transforming growth factor-beta1 levels in the development of vascular defects in endoglin heterozygous mice with hereditary hemorrhagic telangiectasia. , 2001, The American journal of pathology.

[10]  M. Goumans,et al.  Abnormal angiogenesis but intact hematopoietic potential in TGF‐β type I receptor‐deficient mice , 2001, The EMBO journal.

[11]  L. Sussel,et al.  Homeobox gene Nkx6.1 lies downstream of Nkx2.2 in the major pathway of beta-cell formation in the pancreas. , 2000, Development.

[12]  D. Melton,et al.  Activin receptor patterning of foregut organogenesis. , 2000, Genes & development.

[13]  H. Azuma,et al.  Genetic and molecular pathogenesis of hereditary hemorrhagic telangiectasia. , 2000, The journal of medical investigation : JMI.

[14]  P. Donahoe,et al.  Activin receptor-like kinase 1 modulates transforming growth factor-beta 1 signaling in the regulation of angiogenesis. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[15]  M. Longaker,et al.  The ontogeny of TGF-β1, -β2, -β3, and TGF-β receptor-II expression in the pancreas: Implications for regulation of growth and differentiation , 1999 .

[16]  M. Longaker,et al.  The ontogeny of TGF-beta1, -beta2, -beta3, and TGF-beta receptor-II expression in the pancreas: implications for regulation of growth and differentiation. , 1999, Journal of pediatric surgery.

[17]  Tadej Battelino,et al.  TGF-β Plays a Key Role in Morphogenesis of the Pancreatic Islets of Langerhans by Controlling the Activity of the Matrix Metalloproteinase MMP-2 , 1998, The Journal of cell biology.

[18]  B. B. Rawdon,et al.  Effects of tri-iodothyronine (T3), insulin, insulin-like growth factor I (IGF-I) and transforming growth factor beta1 (TGFβ1) on the proportion of insulin cells in cultured embryonic chick pancreas , 1998, Anatomy and Embryology.

[19]  M. Itakura,et al.  Hypoplasia of pancreatic islets in transgenic mice expressing activin receptor mutants. , 1998, The Journal of clinical investigation.

[20]  R. Scharfmann,et al.  Follistatin regulates the relative proportions of endocrine versus exocrine tissue during pancreatic development. , 1998, Development.

[21]  L. Wakefield,et al.  Expression of a dominant‐negative mutant TGF‐β type II receptor in transgenic mice reveals essential roles for TGF‐β in regulation of growth and differentiation in the exocrine pancreas , 1997 .

[22]  M. Taketo,et al.  TGF-beta receptor type II deficiency results in defects of yolk sac hematopoiesis and vasculogenesis. , 1996, Developmental biology.

[23]  W. Rutter,et al.  Lineage-specific morphogenesis in the developing pancreas: role of mesenchymal factors. , 1996, Development.

[24]  L. Orci,et al.  TGF-beta 1 overexpression in murine pancreas induces chronic pancreatitis and, together with TNF-alpha, triggers insulin-dependent diabetes. , 1995, Biochemical and biophysical research communications.

[25]  L. Feng,et al.  Accumulation of extracellular matrix and developmental dysregulation in the pancreas by transgenic production of transforming growth factor-beta 1. , 1995, The American journal of pathology.

[26]  A. Kulkarni,et al.  Defective haematopoiesis and vasculogenesis in transforming growth factor-beta 1 knock out mice. , 1995, Development.

[27]  S. Gilbert,et al.  Activin disrupts epithelial branching morphogenesis in developing glandular organs of the mouse , 1995, Mechanisms of Development.

[28]  L. Orci,et al.  TGF-beta 1 influences the relative development of the exocrine and endocrine pancreas in vitro. , 1994, Development.

[29]  K. Cho,et al.  Angiography of pancreatic arteriovenuos malformation. , 1977, AJR. American journal of roentgenology.

[30]  A. Turner,et al.  Hereditary Hemorrhagic Telangiectasia , 1968 .

[31]  C. Grobstein,et al.  Epitheliomesenchymal interaction in pancreatic morphogenesis. , 1962, Developmental biology.

[32]  F. Plum Handbook of Physiology. , 1960 .

[33]  J. Massagué,et al.  Mechanisms of TGF-beta signaling from cell membrane to the nucleus. , 2003, Cell.

[34]  J. Massagué TGF-beta signal transduction. , 1998, Annual review of biochemistry.

[35]  W. Rutter,et al.  An analysis of pancreatic development: role of mesenchymal factor and other extracellular factors. , 1978, The ... Symposium. Society for Developmental Biology. Symposium.

[36]  A. Turner,et al.  Hereditary hemorrhagic telangiectasia. An angiographic study of abdominal visceral angiodysplasias associated with gastrointestinal hemorrhage. , 1968, Radiology.