Approximation of continuous-time infinite-horizon optimal control problems arising in model predictive control

This article presents two different approximations to linear infinite-horizon optimal control problems arising in model predictive control. The dynamics are approximated using a Galerkin approach with parametrized state and input trajectories. It is shown that the first approximation represents an upper bound on the optimal cost of the underlying infinite dimensional optimal control problem, whereas the second approximation results in a lower bound. We analyze the convergence of the costs and the corresponding optimizers as the number of basis functions tends to infinity. The results can be used to quantify the approximation quality with respect to the underlying infinite dimensional optimal control problem.

[1]  Hyunjoong Kim,et al.  Functional Analysis I , 2017 .

[2]  Michael Muehlebach,et al.  Parametrized infinite-horizon model predictive control for linear time-invariant systems with input and state constraints , 2016, 2016 American Control Conference (ACC).

[3]  Jay H. Lee,et al.  Model predictive control: past, present and future , 1999 .

[4]  Liuping Wang Discrete model predictive controller design using Laguerre functions , 2004 .

[5]  Karin Rothschild,et al.  A Course In Functional Analysis , 2016 .

[6]  J. Primbs,et al.  Constrained finite receding horizon linear quadratic control , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[7]  E. Beckenbach CONVEX FUNCTIONS , 2007 .

[8]  Dr. M. G. Worster Methods of Mathematical Physics , 1947, Nature.

[9]  David Q. Mayne,et al.  Constrained model predictive control: Stability and optimality , 2000, Autom..

[10]  H. Halkin Necessary conditions for optimal control problems with infinite horizons , 1974 .

[11]  Daniel Kuhn,et al.  Polynomial Approximations for Continuous Linear Programs , 2012, SIAM J. Optim..

[12]  A. Göpfert Mathematische Optimierung in allgemeinen Vektorräumen , 1973 .

[13]  L. Young,et al.  Lectures on the Calculus of Variations and Optimal Control Theory. , 1971 .

[14]  Sabine Pickenhain,et al.  Infinite Horizon Optimal Control Problems in the Light of Convex Analysis in Hilbert Spaces , 2015 .

[15]  C. C. Chen,et al.  On receding horizon feedback control , 1981, Autom..

[16]  William W. Hager,et al.  Pseudospectral methods for solving infinite-horizon optimal control problems , 2011, Autom..

[17]  Bastian Goldlücke,et al.  Variational Analysis , 2014, Computer Vision, A Reference Guide.

[18]  Liuping Wang Continuous time model predictive control design using orthonormal functions , 2001 .

[19]  R. Cooke Real and Complex Analysis , 2011 .

[20]  Michael Muehlebach,et al.  Approximation of Continuous-Time Infinite-Horizon Optimal Control Problems Arising in Model Predictive Control - Supplementary Notes , 2016, ArXiv.

[21]  I. Michael Ross,et al.  Pseudospectral Methods for Infinite-Horizon Nonlinear Optimal Control Problems , 2005 .