Multimatroids I. Coverings by Independent Sets
暂无分享,去创建一个
[1] Bill Jackson,et al. Orthogonal A-Trails of 4-Regular Graphs Embedded in Surfaces of Low Genus , 1996, J. Comb. Theory, Ser. B.
[2] André Bouchet. Compatible Euler Tours and Supplementary Eulerian Vectors , 1993, Eur. J. Comb..
[3] James G. Oxley,et al. Matroid theory , 1992 .
[4] Bill Jackson. Supplementary Eulerian vectors in isotropic systems , 1991, J. Comb. Theory, Ser. B.
[5] Bill Jackson,et al. A characterisation of graphs having three pairwise compatible Euler tours , 1991, J. Comb. Theory, Ser. B.
[6] C. St. J. A. Nash-Williams. Another Proof of a Theorem Concerning Detachments of Graphs , 1991, Eur. J. Comb..
[7] A. Duchamp. Etude de quelques notions et proprietes relatives aux matroides symetriques : axiomatiques, extensions ponctuelles, quotients, representations , 1991 .
[8] André Bouchet,et al. Matchings and -matroids , 1989, Discret. Appl. Math..
[9] Liqun Qi,et al. Directed submodularity, ditroids and directed submodular flows , 1988, Math. Program..
[10] Ramaswamy Chandrasekaran,et al. Pseudomatroids , 1988, Discret. Math..
[11] André Bouchet,et al. Greedy algorithm and symmetric matroids , 1987, Math. Program..
[12] André Bouchet,et al. Isotropic Systems , 1987, Eur. J. Comb..
[13] Timothy F. Havel,et al. Some Combinatorial Properties of Discriminants in Metric Vector Spaces , 1986 .
[14] Jack Edmonds,et al. Lehmans switching game and a theorem of Tutte and Nash-Williams , 1965 .