Bayesian Hierarchical Modeling on Covariance Valued Data

Analysis of structural and functional connectivity (FC) of human brains is of pivotal importance for diagnosis of cognitive ability. The Human Connectome Project (HCP) provides an excellent source of neural data across different regions of interest (ROIs) of the living human brain. Individual specific data were available from an existing analysis (Dai et al., 2017) in the form of time varying covariance matrices representing the brain activity as the subjects perform a specific task. As a preliminary objective of studying the heterogeneity of brain connectomics across the population, we develop a probabilistic model for a sample of covariance matrices using a scaled Wishart distribution. We stress here that our data units are available in the form of covariance matrices, and we use the Wishart distribution to create our likelihood function rather than its more common usage as a prior on covariance matrices. Based on empirical explorations suggesting the data matrices to have low effective rank, we further model the center of the Wishart distribution using an orthogonal factor model type decomposition. We encourage shrinkage towards a low rank structure through a novel shrinkage prior and discuss strategies to sample from the posterior distribution using a combination of Gibbs and slice sampling. We extend our modeling framework to a dynamic setting to detect change points. The efficacy of the approach is explored in various simulation settings and exemplified on several case studies including our motivating HCP data. We extend our modeling framework to a dynamic setting to detect change points.

[1]  Aki Vehtari,et al.  A survey of Bayesian predictive methods for model assessment, selection and comparison , 2012 .

[2]  Debdeep Pati,et al.  Posterior contraction in sparse Bayesian factor models for massive covariance matrices , 2012, 1206.3627.

[3]  Jesper Andersson,et al.  A multi-modal parcellation of human cerebral cortex , 2016, Nature.

[4]  Adrian E. Raftery,et al.  Bayesian Model Averaging: A Tutorial , 2016 .

[5]  J. Hartigan,et al.  A Bayesian Analysis for Change Point Problems , 1993 .

[6]  Adrian E. Raftery,et al.  Bayesian model averaging: a tutorial (with comments by M. Clyde, David Draper and E. I. George, and a rejoinder by the authors , 1999 .

[7]  P. Hoff Bayesian analysis of matrix data with rstiefel , 2013, 1304.3673.

[8]  Essa Yacoub,et al.  The WU-Minn Human Connectome Project: An overview , 2013, NeuroImage.

[9]  M. Daniels,et al.  Covariance Partition Priors: A Bayesian Approach to Simultaneous Covariance Estimation for Longitudinal Data , 2016, Journal of computational and graphical statistics : a joint publication of American Statistical Association, Institute of Mathematical Statistics, Interface Foundation of North America.

[10]  Timothy E. J. Behrens,et al.  Measuring macroscopic brain connections in vivo , 2015, Nature Neuroscience.

[11]  Mark Jenkinson,et al.  The minimal preprocessing pipelines for the Human Connectome Project , 2013, NeuroImage.

[12]  Alexander Franks,et al.  Shared Subspace Models for Multi-Group Covariance Estimation , 2016, J. Mach. Learn. Res..

[13]  Y. Chikuse Statistics on special manifolds , 2003 .

[14]  Martin A. Lindquist,et al.  Detecting functional connectivity change points for single-subject fMRI data , 2013, Front. Comput. Neurosci..

[15]  Roman Vershynin,et al.  Introduction to the non-asymptotic analysis of random matrices , 2010, Compressed Sensing.

[16]  Michael A. West,et al.  BAYESIAN MODEL ASSESSMENT IN FACTOR ANALYSIS , 2004 .

[17]  Marina Vannucci,et al.  A Bayesian Approach for Estimating Dynamic Functional Network Connectivity in fMRI Data , 2018, Journal of the American Statistical Association.

[18]  Karl J. Friston Functional and Effective Connectivity: A Review , 2011, Brain Connect..

[19]  M. Pourahmadi,et al.  Simultaneous modelling of the Cholesky decomposition of several covariance matrices , 2007 .

[20]  Adrian E. Raftery,et al.  Bayesian Model Averaging , 1998 .

[21]  M. Chun,et al.  Functional connectome fingerprinting: Identifying individuals based on patterns of brain connectivity , 2015, Nature Neuroscience.

[22]  Christopher L. Asplund,et al.  The organization of the human cerebellum estimated by intrinsic functional connectivity. , 2011, Journal of neurophysiology.

[23]  Peter D. Hoff,et al.  A hierarchical eigenmodel for pooled covariance estimation , 2008, 0804.0031.

[24]  Bradley P. Carlin,et al.  Bayesian measures of model complexity and fit , 2002 .

[25]  Vasyl Golosnoy,et al.  The Conditional Autoregressive Wishart Model for Multivariate Stock Market Volatility , 2010 .

[26]  Christoforos Anagnostopoulos,et al.  Estimating time-varying brain connectivity networks from functional MRI time series , 2013, NeuroImage.

[27]  M. Daniels,et al.  A Nonparametric Prior for Simultaneous Covariance Estimation. , 2013, Biometrika.

[28]  M. Pourahmadi Covariance Estimation: The GLM and Regularization Perspectives , 2011, 1202.1661.

[29]  C. Gouriéroux,et al.  The Wishart Autoregressive Process of Multivariate Stochastic Volatility , 2009 .

[30]  Mark E. Schmidt,et al.  The Alzheimer's Disease Neuroimaging Initiative: Progress report and future plans , 2010, Alzheimer's & Dementia.

[31]  Francesco C Stingo,et al.  An Integrative Bayesian Modeling Approach to Imaging Genetics , 2013, Journal of the American Statistical Association.

[32]  I. Dryden,et al.  Non-Euclidean statistics for covariance matrices, with applications to diffusion tensor imaging , 2009, 0910.1656.

[33]  S. Meyers,et al.  The cingulate cortex of older adults with excellent memory capacity , 2017, Cortex.

[34]  Debdeep Pati,et al.  Variable selection using shrinkage priors , 2015, Comput. Stat. Data Anal..

[35]  Martin A. Lindquist,et al.  Evaluating dynamic bivariate correlations in resting-state fMRI: A comparison study and a new approach , 2014, NeuroImage.

[36]  L. Nystrom,et al.  Tracking the hemodynamic responses to reward and punishment in the striatum. , 2000, Journal of neurophysiology.

[37]  James R. Schott,et al.  Some tests for the equality of covariance matrices , 2001 .

[38]  Karl J. Friston,et al.  Structural and Functional Brain Networks: From Connections to Cognition , 2013, Science.

[39]  Thomas E. Nichols,et al.  A positive-negative mode of population covariation links brain connectivity, demographics and behavior , 2015, Nature Neuroscience.

[40]  S. Geisser,et al.  A Predictive Approach to Model Selection , 1979 .

[41]  Zhengwu Zhang,et al.  Discovering Change-Point Patterns in Dynamic Functional Brain Connectivity of a Population , 2017, IPMI.

[42]  J T Gaskins,et al.  Sparsity Inducing Prior Distributions for Correlation Matrices of Longitudinal Data , 2014, Journal of computational and graphical statistics : a joint publication of American Statistical Association, Institute of Mathematical Statistics, Interface Foundation of North America.

[43]  N. Tzourio-Mazoyer,et al.  Automated Anatomical Labeling of Activations in SPM Using a Macroscopic Anatomical Parcellation of the MNI MRI Single-Subject Brain , 2002, NeuroImage.

[44]  Zhengwu Zhang,et al.  Relationships between Human Brain Structural Connectomes and Traits , 2018, bioRxiv.

[45]  H. Akaike,et al.  Information Theory and an Extension of the Maximum Likelihood Principle , 1973 .

[46]  N. Pillai,et al.  Dirichlet–Laplace Priors for Optimal Shrinkage , 2014, Journal of the American Statistical Association.

[47]  Olaf Sporns,et al.  What Is the Human Connectome , 2009 .

[48]  Gustavo Deco,et al.  Can sliding-window correlations reveal dynamic functional connectivity in resting-state fMRI? , 2016, NeuroImage.

[49]  B. Flury Common Principal Components in k Groups , 1984 .

[50]  Matt Simpson,et al.  Bayesian inference for a covariance matrix , 2014, 1408.4050.

[51]  Sumio Watanabe,et al.  Asymptotic Equivalence of Bayes Cross Validation and Widely Applicable Information Criterion in Singular Learning Theory , 2010, J. Mach. Learn. Res..

[52]  R. Kass,et al.  Nonconjugate Bayesian Estimation of Covariance Matrices and its Use in Hierarchical Models , 1999 .

[53]  Aki Vehtari,et al.  Understanding predictive information criteria for Bayesian models , 2013, Statistics and Computing.

[54]  G. Glover Overview of functional magnetic resonance imaging. , 2011, Neurosurgery clinics of North America.

[55]  Xiao-Li Meng,et al.  Modeling covariance matrices in terms of standard deviations and correlations, with application to shrinkage , 2000 .

[56]  D. Dunson,et al.  Simplex Factor Models for Multivariate Unordered Categorical Data , 2012, Journal of the American Statistical Association.

[57]  Van Der Vaart,et al.  The Horseshoe Estimator: Posterior Concentration around Nearly Black Vectors , 2014, 1404.0202.

[58]  Peter D. Hoff,et al.  Simulation of the Matrix Bingham–von Mises–Fisher Distribution, With Applications to Multivariate and Relational Data , 2007, 0712.4166.

[59]  P. Matthews,et al.  Multimodal population brain imaging in the UK Biobank prospective epidemiological study , 2016, Nature Neuroscience.

[60]  Steen Moeller,et al.  The Human Connectome Project's neuroimaging approach , 2016, Nature Neuroscience.

[61]  R. Turner Uses, misuses, new uses and fundamental limitations of magnetic resonance imaging in cognitive science , 2016, Philosophical Transactions of the Royal Society B: Biological Sciences.

[62]  James G. Scott,et al.  The horseshoe estimator for sparse signals , 2010 .

[63]  Philip L. H. Yu,et al.  The Generalized Conditional Autoregressive Wishart Model for Multivariate Realized Volatility , 2017 .

[64]  James G. Scott,et al.  On the half-cauchy prior for a global scale parameter , 2011, 1104.4937.

[65]  K. Mardia,et al.  The von Mises–Fisher Matrix Distribution in Orientation Statistics , 1977 .

[66]  David A. Leopold,et al.  Dynamic functional connectivity: Promise, issues, and interpretations , 2013, NeuroImage.

[67]  R. Wu,et al.  Identification of Successful Cognitive Aging in the Alzheimer's Disease Neuroimaging Initiative Study. , 2017, Journal of Alzheimer's disease : JAD.

[68]  Anders M. Dale,et al.  Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature , 2010, NeuroImage.