Palaeoecological deductions from osteohistology

Palaeoecological deductions are vital for understanding the evolution and diversification of species within prehistoric environments. This review highlights the multitude of ways in which the microanatomy and microscopic structure of bones enables palaeoecological deductions. The occurrence of growth marks in bones is discussed, and their usefulness in deducing the ontogenetic status and age of individuals is considered, as well as how such marks in bones permit the assessment of the growth dynamics of individuals and species. Here osteohistology is shown to provide insight into the structure of past populations, as well as ecological relationships between individuals. In addition, the response of bones to trauma, disease and moulting is considered. Finally, I explore how osteohistology can give insight into ecomorphological adaptations, such as filter feeding, probe feeding and saltatorial locomotion. Methodological advances in three-dimensional microtomography and synchrotron scanning bodes well for future studies in osteohistology and despite some compromises in terms of tissue identity, circumvents the crucial issue of destructive analyses.

[1]  I. Cerda,et al.  Palaeohistology reveals an unusual periodontium and tooth implantation in a filter‐feeding pterodactyloid pterosaur, Pterodaustro guinazui, from the Lower Cretaceous of Argentina , 2023, Journal of anatomy.

[2]  A. Chinsamy,et al.  Osteohistology and palaeobiology of giraffids from the Mio‐Pliocene Langebaanweg (South Africa) , 2023, Journal of anatomy.

[3]  S. McLoughlin,et al.  Specialized herbivory in fossil leaves reveals convergent origins of nyctinasty , 2023, Current Biology.

[4]  Karen Poole Placing juvenile specimens in phylogenies: An ontogenetically sensitive phylogenetic assessment of a new genus of iguanodontian dinosaur from the Early Cretaceous Kirkwood Formation, South Africa , 2022, Anatomical record.

[5]  M. Norell,et al.  Osteohistology of a Triassic dinosaur population reveals highly variable growth trajectories typified early dinosaur ontogeny , 2022, Scientific Reports.

[6]  A. Chinsamy,et al.  Taxonomic and palaeobiological implications of a large, pathological sabretooth (Carnivora, Felidae, Machairodontinae) from the Lower Pliocene of South Africa , 2022, Papers in Palaeontology.

[7]  R. Schoch,et al.  Triassic Nursery? Evidence of Gregarious Behavior in Juvenile Pseudosuchian Archosaurs as Inferred by Humeral Histology of Aetosaurus ferratus (Norian; Southern Germany) , 2022, Journal of Vertebrate Paleontology.

[8]  T. Worthy,et al.  Osteohistology of Dromornis stirtoni (Aves: Dromornithidae) and the biological implications of the bone histology of the Australian mihirung birds , 2022, Anatomical record.

[9]  D. Pol,et al.  Palaeobiology of the early sauropodomorph Mussaurus patagonicus inferred from its long bone histology , 2022, Palaeontology.

[10]  A. Canoville,et al.  New Comparative Data on the Long Bone Microstructure of Large Extant and Extinct Flightless Birds , 2022, Diversity.

[11]  H. Woodward,et al.  Osteohistological description of ostrich and emu long bones, with comments on markers of growth , 2022, Journal of anatomy.

[12]  L. Davis Sphenisciformes , 2022, Encyclopedia of Ocean Sciences.

[13]  P. Makovicky,et al.  Growth variability, dimensional scaling, and the interpretation of osteohistological growth data , 2021, Biology Letters.

[14]  D. Pol,et al.  Earliest evidence of herd-living and age segregation amongst dinosaurs , 2021, Scientific Reports.

[15]  R. Irmis,et al.  Osteology and relationships of Revueltosaurus callenderi (Archosauria: Suchia) from the Upper Triassic (Norian) Chinle Formation of Petrified Forest National Park, Arizona, United States , 2021, Anatomical record.

[16]  A. Chinsamy,et al.  Mineralized-tissue histology reveals protracted life history in the Pliocene three-toed horse from Langebaanweg (South Africa) , 2021, Zoological Journal of the Linnean Society.

[17]  M. Lambertz,et al.  What's my age again? On the ambiguity of histology-based skeletochronology , 2021, Proceedings of the Royal Society B.

[18]  V. Buffrénil,et al.  Bone Histology and the Adaptation to Aquatic Life in Tetrapods , 2021 .

[19]  V. Buffrénil,et al.  Bone Microanatomy and Lifestyle in Tetrapods , 2021 .

[20]  T. Bromage,et al.  Histology of Dental Hard Tissues , 2021 .

[21]  T. Worthy,et al.  Histovariability and Palaeobiological Implications of the Bone Histology of the Dromornithid, Genyornis newtoni , 2021, Diversity.

[22]  J. Choiniere,et al.  Extreme growth plasticity in the early branching sauropodomorph Massospondylus carinatus , 2021, Biology Letters.

[23]  N. Bennett,et al.  Bone remodeling in the longest living rodent, the naked mole‐rat: Interelement variation and the effects of reproduction , 2021, Journal of anatomy.

[24]  N. Bennett,et al.  Long bone histomorphogenesis of the naked mole‐rat: Histodiversity and intraspecific variation , 2020, Journal of anatomy.

[25]  A. Chinsamy,et al.  Cretaceous origins of the vibrotactile bill-tip organ in birds , 2020, Proceedings of the Royal Society B.

[26]  N. Smith,et al.  Osteohistological analyses reveal diverse strategies of theropod dinosaur body-size evolution , 2020, Proceedings of the Royal Society B.

[27]  Serdar Mayda,et al.  Bone histology, palaeobiology, and early diagenetic history of extinct equids from Turkey , 2020, Quaternary Research.

[28]  A. Chinsamy,et al.  Palaeobiological implications of the osteohistology of a basal sauropodomorph dinosaur from South Africa , 2020, Historical Biology.

[29]  N. Warburton,et al.  Ontogenetic growth and the development of a unique fibrocartilage entheses in Macropus fuliginosus. , 2020, Zoology.

[30]  A. Herries,et al.  Humerus midshaft histology in a modern and fossil wombat , 2020 .

[31]  U. Göhlich,et al.  Bone histology yields insights into the biology of the extinct elephant birds (Aepyornithidae) from Madagascar , 2020 .

[32]  Qi Zhao,et al.  Bone Histology of the Non-Iguanodontian Ornithopod Jeholosaurus shangyuanensis and Its Implications for Dinosaur Skeletochronology and Development , 2020, Journal of Vertebrate Paleontology.

[33]  A. Huttenlocker,et al.  Investigation of a bone lesion in a gorgonopsian (Synapsida) from the Permian of Zambia and periosteal reactions in fossil non-mammalian tetrapods , 2020, Philosophical Transactions of the Royal Society B.

[34]  Lindsay E. Zanno,et al.  Identifying medullary bone in extinct avemetatarsalians: challenges, implications and perspectives , 2020, Philosophical Transactions of the Royal Society B.

[35]  Zhiheng Li,et al.  Evolution and distribution of medullary bone: evidence from a new Early Cretaceous enantiornithine bird , 2019, National science review.

[36]  J. Parkington,et al.  Long bone histology of Chersina angulata : Interelement variation and life history data , 2019, Journal of morphology.

[37]  L. Chiappe,et al.  Osteohistology and Life History of the Basal Pygostylian, Confuciusornis sanctus , 2019, Anatomical record.

[38]  M. Bester,et al.  Microanatomy and histology of bone pathologies of extant and extinct phocid seals , 2019, Historical Biology.

[39]  A. Houssaye,et al.  Microstructure of Vertebrae, Ribs, and Gastralia of Triassic Sauropterygians—New Insights into the Microanatomical Processes Involved in Aquatic Adaptations of Marine Reptiles , 2019, Anatomical record.

[40]  B. Rothschild,et al.  Osteomyelitis in a 265-million-year-old titanosuchid (Dinocephalia, Therapsida) , 2019 .

[41]  Zhonghe Zhou,et al.  An Early Cretaceous enantiornithine (Aves) preserving an unlaid egg and probable medullary bone , 2019, Nature Communications.

[42]  Lindsay E. Zanno,et al.  Systemic distribution of medullary bone in the avian skeleton: ground truthing criteria for the identification of reproductive tissues in extinct Avemetatarsalia , 2019, BMC Evolutionary Biology.

[43]  P. Asbach,et al.  Triassic Cancer—Osteosarcoma in a 240-Million-Year-Old Stem-Turtle , 2019, JAMA oncology.

[44]  M. Norell,et al.  Medullary bone in an Early Cretaceous enantiornithine bird and discussion regarding its identification in fossils , 2018, Nature Communications.

[45]  D. Pol,et al.  The Long Bone Histology of the Sauropodomorph, Antetonitrus ingenipes , 2018, Anatomical record.

[46]  L. Legendre,et al.  Digging the compromise: investigating the link between limb bone histology and fossoriality in the aardvark (Orycteropus afer) , 2018, PeerJ.

[47]  K. C. Rogers,et al.  Osteohistology of Rapetosaurus krausei (Sauropoda: Titanosauria) from the Upper Cretaceous of Madagascar , 2018, Journal of Vertebrate Paleontology.

[48]  M. Köhler,et al.  Limb bone histology records birth in mammals , 2018, PloS one.

[49]  A. Chinsamy,et al.  Cortical bone adaptation and mineral mobilization in the subterranean mammal Bathyergus suillus (Rodentia: Bathyergidae): effects of age and sex , 2018, PeerJ.

[50]  Roxanne S. Beltran,et al.  Convergence of biannual moulting strategies across birds and mammals , 2018, Proceedings of the Royal Society B: Biological Sciences.

[51]  M. Romano,et al.  Dinosaur-plant interactions within a Middle Jurassic ecosystem—palynology of the Burniston Bay dinosaur footprint locality, Yorkshire, UK , 2018, Palaeobiodiversity and Palaeoenvironments.

[52]  J. Hume,et al.  Bone histology sheds new light on the ecology of the dodo (Raphus cucullatus, Aves, Columbiformes) , 2017, Scientific Reports.

[53]  J. Hume,et al.  Bone histology sheds new light on the ecology of the dodo (Raphus cucullatus, Aves, Columbiformes) , 2017, Scientific Reports.

[54]  H. Sues,et al.  Ontogenetic changes in long-bone histology of an ornithomimid theropod dinosaur from the Upper Cretaceous Bissekty Formation of Uzbekistan , 2017 .

[55]  S. Salisbury,et al.  Investigating the stratigraphy and palaeoenvironments for a suite of newly discovered mid-Cretaceous vertebrate fossil-localities in the Winton Formation, Queensland, Australia , 2017 .

[56]  J. Gauthier,et al.  Osteohistology and sequence of suture fusion reveal complex environmentally influenced growth in the teiid lizard Aspidoscelis tigris — Implications for fossil squamates , 2017 .

[57]  B. Hedrick,et al.  Histologic Examination of an Assemblage of Psittacosaurus (Dinosauria: Ceratopsia) Juveniles From the Yixian Formation (Liaoning, China) , 2016, Anatomical record.

[58]  A. Zihlman,et al.  Primary bone microanatomy records developmental aspects of life history in catarrhine primates. , 2016, Journal of human evolution.

[59]  R. Elsey,et al.  Alligator osteoderms as a source of labile calcium for eggshell formation , 2015 .

[60]  J. Horner,et al.  Maiasaura, a model organism for extinct vertebrate population biology: a large sample statistical assessment of growth dynamics and survivorship , 2015, Paleobiology.

[61]  C. Tambussi,et al.  Unexpected microanatomical variation among Eocene Antarctic stem penguins (Aves: Sphenisciformes) , 2015 .

[62]  P. Fratzl,et al.  Rapid alterations of avian medullary bone material during the daily egg-laying cycle. , 2014, Bone.

[63]  D. Pol,et al.  Unusual Endosteally Formed Bone Tissue in a Patagonian Basal Sauropodomorph Dinosaur , 2014, Anatomical record.

[64]  A. Houssaye Bone Histology of Fossil Tetrapods: Advancing Methods, Analysis, and Interpretation , 2014 .

[65]  J. Horner,et al.  Quantification of intraskeletal histovariability in Alligator mississippiensis and implications for vertebrate osteohistology , 2014, PeerJ.

[66]  E. Buffetaut,et al.  Insight into the growth dynamics and systematic affinities of the Late Cretaceous Gargantuavis from bone microstructure , 2014, Naturwissenschaften.

[67]  D. Pol,et al.  Osteohistological insight into the early stages of growth in Mussaurus patagonicus (Dinosauria, Sauropodomorpha) , 2014 .

[68]  X. Jordana,et al.  Bone histology as an approach to providing data on certain key life history traits in mammals: Implications for conservation biology , 2013 .

[69]  C. Labandeira A paleobiologic perspective on plant-insect interactions. , 2013, Current opinion in plant biology.

[70]  I. Cerda,et al.  The Behavioral Implications of a Multi-Individual Bonebed of a Small Theropod Dinosaur , 2013, PloS one.

[71]  V. Buffrénil,et al.  Microstructure and Mineralization of Vertebrate Skeletal Tissues , 2013 .

[72]  K. Padian,et al.  Bone Histology of Fossil Tetrapods: Advancing Methods, Analysis, and Interpretation , 2013 .

[73]  L. Chiappe,et al.  Gender identification of the Mesozoic bird Confuciusornis sanctus , 2013, Nature Communications.

[74]  B. Kremer,et al.  Mineral microbial structures in a bone of the Late Cretaceous dinosaur Saurolophus angustirostris from the Gobi Desert, Mongolia — a Raman spectroscopy study , 2012 .

[75]  A. Canoville,et al.  New Insights into the Biology of the Permian Genus Cistecephalus (Therapsida, Dicynodontia) , 2012 .

[76]  Roger M. H. Smith,et al.  Evidence of a therapsid scavenger in the Late Permian Karoo Basin, South Africa , 2012 .

[77]  X. Jordana,et al.  Seasonal bone growth and physiology in endotherms shed light on dinosaur physiology , 2012, Nature.

[78]  T. Hübner Bone Histology in Dysalotosaurus lettowvorbecki (Ornithischia: Iguanodontia) – Variation, Growth, and Implications , 2012, PloS one.

[79]  S. Maloney,et al.  Minimum daily core body temperature in western grey kangaroos decreases as summer advances: a seasonal pattern, or a direct response to water, heat or energy supply? , 2011, Journal of Experimental Biology.

[80]  G. Avery,et al.  Pathologies in the Early Pliocene phocid seals from Langebaanweg, South Africa , 2011 .

[81]  A. Chinsamy,et al.  Ontogenetic Changes in the Epiphyseal Cartilage of Rana (Pelophylax) caralitana (Anura: Ranidae) , 2010, Anatomical record.

[82]  Nicole Klein,et al.  Long Bone Histology of Sauropterygia from the Lower Muschelkalk of the Germanic Basin Provides Unexpected Implications for Phylogeny , 2010, PloS one.

[83]  V. Rull Ecology and Palaeoecology: Two Approaches, One Objective , 2010 .

[84]  S. Moyà-Solà,et al.  Physiological and life history strategies of a fossil large mammal in a resource-limited environment , 2009, Proceedings of the National Academy of Sciences.

[85]  J. Cubo,et al.  Bone growth marks reveal protracted growth in New Zealand kiwi (Aves, Apterygidae) , 2009, Biology Letters.

[86]  A. Chinsamy,et al.  Pathologic Bone Tissues in a Turkey Vulture and a Nonavian Dinosaur: Implications for Interpreting Endosteal Bone and Radial Fibrolamellar Bone in Fossil Dinosaurs , 2009, Anatomical record.

[87]  A. Hall-Martin,et al.  Long‐bone circumference and weight in mammals, birds and dinosaurs , 2009 .

[88]  R. McN. Alexander,et al.  The thickness of the walls of tubular bones , 2009 .

[89]  L. Chiappe,et al.  Developmental growth patterns of the filter-feeder pterosaur, Pterodaustro guiñazui , 2008, Biology Letters.

[90]  F. Abdala,et al.  Palaeobiological implications of the bone microstructure of South American traversodontids (Therapsida: Cynodontia) , 2008 .

[91]  S. Werning,et al.  Sexual maturity in growing dinosaurs does not fit reptilian growth models , 2008, Proceedings of the National Academy of Sciences.

[92]  R. Elsey,et al.  Do egg-laying crocodilian (Alligator mississippiensis) archosaurs form medullary bone? , 2007, Bone.

[93]  J. Castanet Time recording in bone microstructures of endothermic animals; functional relationships , 2006 .

[94]  E. Lamm,et al.  Sizing the Jurassic theropod dinosaur Allosaurus: Assessing growth strategy and evolution of ontogenetic scaling of limbs , 2006, Journal of morphology.

[95]  P. M. Sander,et al.  Developmental Plasticity in the Life History of a Prosauropod Dinosaur , 2005, Science.

[96]  G. Erickson Assessing dinosaur growth patterns: a microscopic revolution. , 2005, Trends in ecology & evolution.

[97]  A. Chinsamy-Turan The Microstructure of Dinosaur Bone: Deciphering Biology with Fine-Scale Techniques , 2005 .

[98]  S. Turvey,et al.  Cortical growth marks reveal extended juvenile development in New Zealand moa , 2005, Nature.

[99]  M. Schweitzer,et al.  Gender-Specific Reproductive Tissue in Ratites and Tyrannosaurus rex , 2005, Science.

[100]  E. Margerie,et al.  Variation of the Outer Circumferential Layer in the Limb Bones of Birds , 2004 .

[101]  J. Horner,et al.  Age and growth dynamics of Tyrannosaurus rex† , 2004, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[102]  E. Buffetaut,et al.  Adaptive radiation in sauropod dinosaurs: bone histology indicates rapid evolution of giant body size through acceleration , 2004 .

[103]  E. Margerie,et al.  Assessing a relationship between bone microstructure and growth rate: a fluorescent labelling study in the king penguin chick (Aptenodytes patagonicus) , 2004, Journal of Experimental Biology.

[104]  Alan Boyde,et al.  Circularly polarized light standards for investigations of collagen fiber orientation in bone. , 2003, Anatomical record. Part B, New anatomist.

[105]  A. Seilacher,et al.  Ediacaran biota: The dawn of animal life in the shadow of giant protists , 2003 .

[106]  J. M. Starck,et al.  Bone microstructure and developmental plasticity in birds and other dinosaurs , 2002, Journal of morphology.

[107]  I. Hershkovitz,et al.  Metastatic cancer in the Jurassic , 1999, The Lancet.

[108]  A. Chinsamy,et al.  Bone microstructure of the divingHesperornisand the voltantIchthyornisfrom the Niobrara Chalk of western Kansas , 1998 .

[109]  S. A. Hanrahan,et al.  Skeletochronological Assessment of Age in Angolosaurus skoogi, a Cordylid Lizard Living in an Aseasonal Environment , 1995 .

[110]  A. Chinsamy Ontogenetic Changes in the Bone Histology of the Late Jurassic Ornithopod Dryosaurus lettowvorbecki , 1995 .

[111]  L. Chiappe,et al.  Growth rings in Mesozoic birds , 1994, Nature.

[112]  Larry D. Martin,et al.  Paleopathology Disease in the Fossil Record , 1992 .

[113]  J. King,et al.  Do molting birds renovate their skeletons as well as their plumages? Osteoporosis during the annual molt in sparrows , 1992 .

[114]  C. Wink,et al.  Changes in femoral robusticity and porosity during the reproductive cycle of the female alligator (Alligator mississippiensis) , 1987, Journal of morphology.

[115]  J. Hutton Age determination of living nile crocodiles from the cortical stratification of bone , 1986 .

[116]  R. Reid Lamellar-zonal bone with zones and annuli in the pelvis of a sauropod dinosaur , 1981, Nature.

[117]  M. Wade,et al.  Dinosaur stampede in the Cretaceous of Queensland , 1979 .

[118]  A. Dunham Food Availability as a Proximate Factor Influencing Individual Growth Rates in the Iguanid Lizard Sceloporus Merriami , 1978 .

[119]  F. Peabody Annual growth zones in living and fossil vertebrates , 1961 .

[120]  W. Meister,et al.  Changes in histological structure of the long bones of birds during the molt , 1951, The Anatomical record.

[121]  B. Rothschild,et al.  Non-traumatic bone infection in stegosaurs from Como Bluff, Wyoming , 2015 .

[122]  B. Rothschild,et al.  Osseous and Other Hard Tissue Pathologies in Turtles and Abnormalities of Mineral Deposition , 2013 .

[123]  V. Dabee Comparison of the long bone microstructure of two southern African marine birds, the Cape gannet (Morus capensis) and the African penguin (Spheniscus demersus) with respect to their aquatic adaptations , 2013 .

[124]  S. Werning Evolution of Bone Histological Characters in Amniotes, and the Implications for the Evolution of Growth and Metabolism , 2013 .

[125]  K. Jepsen,et al.  Lack of sexual dimorphism in femora of the eusocial and hypogonadic naked mole-rat: a novel animal model for the study of delayed puberty on the skeletal system. , 2010, Bone.

[126]  J. Hurum,et al.  Bone microstructure and growth patterns of early mammals , 2006 .

[127]  M. Snover,et al.  Validation and interpretation of annual skeletal marks in loggerhead (Caretta caretta) and Kemp's ridley (Lepidochelys kempii) sea turtles , 2004 .

[128]  M. Báez,et al.  Adaptation and evolution in Gallotia lizards from the Canary Islands: age, growth, maturity and longevity , 1991 .

[129]  J. Castanet,et al.  Introduction to the skeletochronological method in amphibians and reptiles , 1990 .

[130]  A. Chinsamy Physiological implications of the bone histology of Syntarsus rhodesiensis (Saurischia: Theropoda) , 1990 .

[131]  S. Gould Wonderful Life: The Burgess Shale and the Nature of History , 1989 .

[132]  D. Newman,et al.  Skeletochronological data on the growth, age, and population structure of the tuatara, Sphenodon punctatus, on Stephens and Lady Alice islands, New Zealand , 1988 .

[133]  C. Wink,et al.  The effects of estradiol on plasma calcium and femoral bone structure in alligators (Alligator mississippiensis). , 1986, Comparative biochemistry and physiology. A, Comparative physiology.

[134]  A. Hemelaar An Improved Method to estimate the Number of Year Rings resorbed in Phalanges of Bufo bufo (L.) and its Application to Populations from Different Latitudes and Altitudes , 1985 .

[135]  Ricqles De Cyclical growth in the long limb bones of a sauropod dinosaur , 1983 .

[136]  R. Schreiber Growth and Development of Nestling Brown Pelicans , 1976 .

[137]  S. E. Kleĭnenberg,et al.  Age determination of mammals from annual layers in teeth and bones , 1969 .