Effects of spatial smoothing on fMRI group inferences.

[1]  Karl J. Friston,et al.  Analysis of fMRI Time-Series Revisited , 1995, NeuroImage.

[2]  Karl J. Friston,et al.  Analysis of fMRI Time-Series Revisited—Again , 1995, NeuroImage.

[3]  J Xiong,et al.  Assessment and optimization of functional MRI analyses , 1996, Human brain mapping.

[4]  Karl J. Friston,et al.  Detecting Activations in PET and fMRI: Levels of Inference and Power , 1996, NeuroImage.

[5]  Karl J. Friston,et al.  A unified statistical approach for determining significant signals in images of cerebral activation , 1996, Human brain mapping.

[6]  Alan C. Evans,et al.  Searching scale space for activation in PET images , 1996, Human brain mapping.

[7]  M. D’Esposito,et al.  Empirical Analyses of BOLD fMRI Statistics , 1997, NeuroImage.

[8]  Karl J. Friston,et al.  Combining Spatial Extent and Peak Intensity to Test for Activations in Functional Imaging , 1997, NeuroImage.

[9]  M. D’Esposito,et al.  Empirical analyses of BOLD fMRI statistics. I. Spatially unsmoothed data collected under null-hypothesis conditions. , 1997, NeuroImage.

[10]  J M Maisog,et al.  An efficient method for correcting the edge artifact due to smoothing , 1998, Human brain mapping.

[11]  L C Maas,et al.  Post-registration spatial filtering to reduce noise in functional MRI data sets. , 1999, Magnetic resonance imaging.

[12]  Karl J. Friston,et al.  Multisubject fMRI Studies and Conjunction Analyses , 1999, NeuroImage.

[13]  Karl J. Friston,et al.  Robust Smoothness Estimation in Statistical Parametric Maps Using Standardized Residuals from the General Linear Model , 1999, NeuroImage.

[14]  T Lindeberg,et al.  Analysis of brain activation patterns using a 3‐D scale‐space primal sketch , 1999, Human brain mapping.

[15]  Karl J. Friston,et al.  A Study of Analysis Parameters That Influence the Sensitivity of Event-Related fMRI Analyses , 2000, NeuroImage.

[16]  Karl J. Friston,et al.  Anatomically Informed Basis Functions , 2000, NeuroImage.

[17]  N. Andreasen,et al.  Anatomic and Functional Variability: The Effects of Filter Size in Group fMRI Data Analysis , 2001, NeuroImage.

[18]  B. Ardekani,et al.  Functional magnetic resonance imaging of brain activity in the visual oddball task. , 2002, Brain research. Cognitive brain research.

[19]  Karl J Friston,et al.  Anatomically informed basis functions in multisubject studies , 2002, Human brain mapping.

[20]  Jens Frahm,et al.  On the Effects of Spatial Filtering—A Comparative fMRI Study of Episodic Memory Encoding at High and Low Resolution , 2002, NeuroImage.

[21]  Thomas E. Nichols,et al.  Controlling the familywise error rate in functional neuroimaging: a comparative review , 2003, Statistical methods in medical research.

[22]  Hans Knutsson,et al.  Adaptive analysis of fMRI data , 2003, NeuroImage.

[23]  Optimization of fMRI Group Analysis Using Various SpatialSmoothing Parameters , 2005 .

[24]  Michal Mikl,et al.  Combined event-related fMRI and intracerebral ERP study of an auditory oddball task , 2005, NeuroImage.

[25]  Rupert Lanzenberger,et al.  Influence of fMRI smoothing procedures on replicability of fine scale motor localization , 2005, NeuroImage.

[26]  Xenophon Papademetris,et al.  Spatial resolution, signal-to-noise ratio, and smoothing in multi-subject functional MRI studies , 2006, NeuroImage.

[27]  Mark Slifstein,et al.  Effect of Spatial Smoothing on t-Maps: Arguments for Going Back from t-Maps to Masked Contrast Images , 2006, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[28]  Michal Mikl,et al.  Effective connectivity in target stimulus processing: A dynamic causal modeling study of visual oddball task , 2007, NeuroImage.