Modeling the evolution of volatile species during tobacco pyrolysis

Abstract A great need exists for comprehensive biomass-pyrolysis models that could predict yields and evolution patterns of selected volatile products as a function of feedstock characteristics and process conditions. Low heating rate data obtained from a thermogravimetric analyzer (TGA), coupled with Fourier transform infrared analysis of evolving products (TG-FTIR), were used to perform kinetic analysis of tobacco pyrolysis. The results were utilized to create input to a biomass-pyrolysis model based on first-order kinetic expressions with a Gaussian distribution of activation energies. Pyrolysis simulations were carried out for high heating rate conditions, and predicted product yields were compared with literature data.