Deep Reinforcement Learning Solutions for Energy Microgrids Management

This paper addresses the problem of efficiently operating the storage devices in an electricity microgrid featuring photovoltaic (PV) panels with both shortand long-term storage capacities. The problem of optimally activating the storage devices is formulated as a sequential decision making problem under uncertainty where, at every time-step, the uncertainty comes from the lack of knowledge about future electricity consumption and weather dependent PV production. This paper proposes to address this problem using deep reinforcement learning. To this purpose, a specific deep learning architecture has been designed in order to extract knowledge from past consumption and production time series as well as any available forecasts. The approach is empirically illustrated in the case of a residential customer located in Belgium.