A Theoretical Framework for Learning Bayesian Networks with Parameter Inequality Constraints
暂无分享,去创建一个
Tom M. Mitchell | R. Bharat Rao | Radu Stefan Niculescu | R. B. Rao | Tom Michael Mitchell | R. Niculescu
[1] Stuart J. Russell,et al. Dynamic bayesian networks: representation, inference and learning , 2002 .
[2] Thomas G. Dietterich,et al. Learning from Sparse Data by Exploiting Monotonicity Constraints , 2005, UAI.
[3] HeckermanDavid,et al. Knowledge representation and inference in similarity networks and Bayesian multinets , 1996 .
[4] David Heckerman,et al. A Tutorial on Learning with Bayesian Networks , 1998, Learning in Graphical Models.
[5] Avi Pfeffer,et al. Object-Oriented Bayesian Networks , 1997, UAI.
[6] Lawrence R. Rabiner,et al. A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.
[7] Dimitri P. Bertsekas,et al. Nonlinear Programming , 1997 .
[8] F. A. Seiler,et al. Numerical Recipes in C: The Art of Scientific Computing , 1989 .
[9] William H. Press,et al. The Art of Scientific Computing Second Edition , 1998 .
[10] Tom M. Mitchell,et al. Exploiting Parameter Related Domain Knowledge for Learning in Graphical Models , 2005, SDM.
[11] Linda C. van der Gaag,et al. Learning Bayesian network parameters under order constraints , 2006, Int. J. Approx. Reason..
[12] Craig Boutilier,et al. Context-Specific Independence in Bayesian Networks , 1996, UAI.
[13] David Heckerman,et al. Knowledge Representation and Inference in Similarity Networks and Bayesian Multinets , 1996, Artif. Intell..
[14] K. Schittkowski,et al. NONLINEAR PROGRAMMING , 2022 .
[15] Michael C. Horsch,et al. Dynamic Bayesian networks , 1990 .
[16] Greg Welch,et al. Welch & Bishop , An Introduction to the Kalman Filter 2 1 The Discrete Kalman Filter In 1960 , 1994 .
[17] Jeff A. Bilmes,et al. Dynamic Bayesian Multinets , 2000, UAI.
[18] W. Press,et al. Numerical Recipes in Fortran: The Art of Scientific Computing.@@@Numerical Recipes in C: The Art of Scientific Computing. , 1994 .
[19] Lise Getoor,et al. Learning Probabilistic Relational Models , 1999, IJCAI.
[20] D. Geiger,et al. A characterization of the Dirichlet distribution through global and local parameter independence , 1997 .
[21] Joshua B. Tenenbaum,et al. Separating Style and Content with Bilinear Models , 2000, Neural Computation.
[22] Nir Friedman,et al. Learning Module Networks , 2002, J. Mach. Learn. Res..
[23] Pedro Larrañaga,et al. Learning Recursive Bayesian Multinets for Data Clustering by Means of Constructive Induction , 2002, Machine Learning.