Novel Cholesteric Glassy Liquid Crystals Comprising Benzene Functionalized with Hybrid Chiral-Nematic Mesogens

With 4′-cyanobiphenyl-4-yl benzoate nematogens chemically bonded to a benzene core via enantiomeric 2-methylpropyl spacers, a new series of cholesteric glassy liquid crystals has been synthesized for an investigation of structure−property relationships. Glass-forming ability, phase-transition temperatures, and stability against crystallization are affected by both the number and the position of substituent groups on the benzene ring with 1,3,5-trisubstituted system possessing the most favorable set of properties, Tg at 73 °C and Tc at 295 °C. With (S)-3-bromo-2-methylpropanol as the chiral precursor, left-handed helical stacking was observed for all the cholesteric GLCs reported herein. Films of the 1,3,5-trisubstituted and meta-disubstituted systems show a selective reflection wavelength, λR, at 413 and 422 nm, respectively, whereas that of the ortho-isomer exhibits a λR at 860 nm. Replacing one of the hybrid chiral-nematic mesogen in the 1,3,5-trisubstituted system by a nematogen loosens the helical pit...