Choosability in geometric hypergraphs

[1]  Noga Alon,et al.  Choice Numbers of Graphs: a Probabilistic Approach , 1992, Combinatorics, Probability and Computing.

[2]  Michael Krivelevich,et al.  Choosability in Random Hypergraphs , 2001, J. Comb. Theory, Ser. B.

[3]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[4]  Aravind Srinivasan,et al.  The discrepancy of permutation families , 1997 .

[5]  Micha Sharir,et al.  On the union of Jordan regions and collision-free translational motion amidst polygonal obstacles , 1986, Discret. Comput. Geom..

[6]  Suzanne M. Seager,et al.  Ordered colourings , 1995, Discret. Math..

[7]  Carsten Thomassen,et al.  Every Planar Graph Is 5-Choosable , 1994, J. Comb. Theory B.

[8]  Géza Bohus,et al.  On the Discrepancy of 3 Permutations , 1990, Random Struct. Algorithms.

[9]  Shakhar Smorodinsky On the chromatic number of some geometric hypergraphs , 2006, SODA '06.

[10]  N. Alon Restricted colorings of graphs , 1993 .

[11]  Robert E. Tarjan,et al.  Applications of a planar separator theorem , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).

[12]  Dana Ron,et al.  Conflict-Free Colorings of Simple Geometric Regions with Applications to Frequency Assignment in Cellular Networks , 2003, SIAM J. Comput..

[13]  János Pach,et al.  Coloring axis-parallel rectangles , 2010, J. Comb. Theory, Ser. A.

[14]  M. Sharir,et al.  Combinatorial problems in computational geometry , 2003 .