Breaking the 2n-barrier for Irredundance: Two lines of attack

The lower and the upper irredundance numbers of a graph G, denoted ir(G) and IR(G), respectively, are conceptually linked to the domination and independence numbers and have numerous relations to other graph parameters. It has been an open question whether determining these numbers for a graph G on n vertices admits exact algorithms running in time faster than the trivial @Q(2^n@?poly(n)) enumeration, also called the 2^n-barrier. The main contributions of this article are exact exponential-time algorithms breaking the 2^n-barrier for irredundance. We establish algorithms with running times of O^@?(1.99914^n) for computing ir(G) and O^@?(1.9369^n) for computing IR(G). Both algorithms use polynomial space. The first algorithm uses a parameterized approach to obtain (faster) exact algorithms. The second one is based, in addition, on a reduction to the Maximum Induced Matching problem providing a branch-and-reduce algorithm to solve it.

[1]  Fedor V. Fomin,et al.  Exact exponential algorithms , 2013, CACM.

[2]  Ernest J. Cockayne,et al.  Irredundance and Maximum Degree in Graphs , 1997, Comb. Probab. Comput..

[3]  Thomas C. van Dijk,et al.  Inclusion/Exclusion Meets Measure and Conquer , 2009, ESA.

[4]  Andreas Björklund,et al.  Inclusion--Exclusion Algorithms for Counting Set Partitions , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[5]  Jesper Nederlof Fast Polynomial-Space Algorithms Using Möbius Inversion: Improving on Steiner Tree and Related Problems , 2009, ICALP.

[6]  Henning Fernau,et al.  A Parameterized Route to Exact Puzzles: Breaking the 2n-Barrier for Irredundance , 2010, CIAC.

[7]  Fabrizio Grandoni,et al.  A measure & conquer approach for the analysis of exact algorithms , 2009, JACM.

[8]  E. Cockayne,et al.  Properties of Hereditary Hypergraphs and Middle Graphs , 1978, Canadian Mathematical Bulletin.

[9]  Michael A. Henning,et al.  Total irredundance in graphs , 2002, Discret. Math..

[10]  Andreas Björklund,et al.  Set Partitioning via Inclusion-Exclusion , 2009, SIAM J. Comput..

[11]  Andreas Björklund,et al.  The Travelling Salesman Problem in Bounded Degree Graphs , 2008, ICALP.

[12]  Thomas C. van Dijk,et al.  Inclusion/Exclusion Meets Measure and Conquer , 2013, Algorithmica.

[13]  Michael R. Fellows,et al.  The Private Neighbor Cube , 1994, SIAM J. Discret. Math..

[14]  Odile Favaron,et al.  Two relations between the parameters of independence and irredundance , 1988, Discret. Math..

[15]  O. Ore Theory of Graphs , 1962 .

[16]  Odile Favaron,et al.  Contributions to the theory of domination, independence and irredundance in graphs , 1981, Discret. Math..

[17]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[18]  Michael R. Fellows,et al.  Blow-Ups, Win/Win's, and Crown Rules: Some New Directions in FPT , 2003, WG.

[19]  Henning Fernau,et al.  Kernels: Annotated, Proper and Induced , 2006, IWPEC.

[20]  J. A. Telle Vertex partitioning problems: characterization, complexity and algorithms on partial K-trees , 1994 .

[21]  Vadim. Zverovich,et al.  On domination and irredundance in graphs , 1989 .

[22]  C. Pandu Rangan,et al.  Weighted Irredundance of Interval Graphs , 1998, Inf. Process. Lett..

[23]  Andreas Björklund,et al.  Fourier meets möbius: fast subset convolution , 2006, STOC '07.

[24]  Dimitrios M. Thilikos,et al.  Invitation to fixed-parameter algorithms , 2007, Comput. Sci. Rev..

[25]  Jörg Flum,et al.  Parameterized Complexity Theory , 2006, Texts in Theoretical Computer Science. An EATCS Series.

[26]  Peter J. Slater,et al.  Fundamentals of domination in graphs , 1998, Pure and applied mathematics.

[27]  Hannes Moser,et al.  The parameterized complexity of the induced matching problem , 2009, Discret. Appl. Math..

[28]  Saket Saurabh,et al.  Parameterized algorithms for feedback set problems and their duals in tournaments , 2006, Theor. Comput. Sci..

[29]  Marcin Pilipczuk,et al.  Irredundant Set Faster Than O(2n) , 2010, CIAC.

[30]  Robert B. Allan,et al.  On domination and independent domination numbers of a graph , 1978, Discret. Math..

[31]  Odile Favaron A note on the irredundance number after vertex deletion , 1993, Discret. Math..

[32]  Jörg Flum,et al.  Parameterized Complexity Theory (Texts in Theoretical Computer Science. An EATCS Series) , 2006 .

[33]  Gerhard J. Woeginger,et al.  Exact Algorithms for NP-Hard Problems: A Survey , 2001, Combinatorial Optimization.

[34]  Béla Bollobás,et al.  Graph-theoretic parameters concerning domination, independence, and irredundance , 1979, J. Graph Theory.

[35]  Béla Bollobás,et al.  The irredundance number and maximum degree of a graph , 1984, Discret. Math..

[36]  Michael R. Fellows,et al.  The complexity of irredundant sets parameterized by size , 2000, Discret. Appl. Math..

[37]  Yoshio Okamoto,et al.  08431 Open Problems - Moderately Exponential Time Algorithms , 2008, Moderately Exponential Time Algorithms.

[38]  Michael R. Fellows,et al.  Linear Kernels in Linear Time, or How to Save k Colors in O(n2) Steps , 2004, WG.

[39]  Charles J. Colbourn,et al.  Concurrent Transmissions in Broadcast Networks , 1984, ICALP.