Higher spin Chern–Simons theory and the super Boussinesq hierarchy

In this paper, we construct a map between a solution of supersymmetric Chern–Simons higher spin gravity based on the superalgebra [Formula: see text] with Lifshitz scaling and the [Formula: see text] super Boussinesq hierarchy. We show that under this map the time evolution equations of both theories coincide. In addition, we identify the Poisson structure of the Chern–Simons theory induced by gauge transformation with the second Hamiltonian structure of the super Boussinesq hierarchy.

[1]  M. Beccaria,et al.  Higher spin Lifshitz theories and the Korteweg-de Vries hierarchy , 2015, 1504.06555.

[2]  M. Gutperle,et al.  Higher Spin Lifshitz Theory and Integrable Systems , 2014, 1412.7085.

[3]  Ricardo Troncoso,et al.  Higher Spin Black Holes , 2015 .

[4]  Ricardo Troncoso,et al.  Brief review on higher spin black holes , 2014, 1402.1465.

[5]  E. Hijano,et al.  Lifshitz black holes in higher spin gravity , 2013, 1310.0837.

[6]  Ricardo Troncoso,et al.  Asymptotically flat spacetimes in three-dimensional higher spin gravity , 2013, 1307.5651.

[7]  Yi-Nan Wang,et al.  Conical defects, black holes and higher spin (super-)symmetry , 2013, 1303.0109.

[8]  C. Peng Dualities from higher-spin supergravity , 2012, 1211.6748.

[9]  R. Gopakumar,et al.  Minimal model holography , 2012, 1207.6697.

[10]  R. Rashkov,et al.  Non-AdS holography in 3-dimensional higher spin gravity — General recipe and example , 2012, 1209.2860.

[11]  H. Tan Exploring three-dimensional higher-spin supergravity based on sl(N|N − 1) Chern-Simons theories , 2012, 1208.2277.

[12]  Gustavo Lucena Gómez,et al.  Super-W∞ asymptotic symmetry of higher-spin AdS3 supergravity , 2012, 1203.5152.

[13]  M. Gaberdiel,et al.  Supersymmetric holography on AdS3 , 2012, 1203.1939.

[14]  R. Rashkov,et al.  Towards non-AdS holography in 3-dimensional higher spin gravity , 2011, 1201.0013.

[15]  R. Gopakumar,et al.  An AdS_3 Dual for Minimal Model CFTs , 2010, 1011.2986.

[16]  S. Pfenninger,et al.  Asymptotic symmetries of three-dimensional gravity coupled to higher-spin fields , 2010, 1008.4744.

[17]  M. Henneaux,et al.  Nonlinear W∞ as asymptotic symmetry of three-dimensional higher spin AdS gravity , 2010, 1008.4579.

[18]  M. Vasiliev Higher Spin Symmetries, Star-Product and Relativistic Equations in AdS Space , 2000 .

[19]  M. Vasiliev Higher Spin Gauge Theories: Star-Product and AdS Space , 1999, hep-th/9910096.

[20]  L. Dickey Lectures on Classical W-Algebras , 1997 .

[21]  F. Delduc,et al.  N = 2 KP and KdV Hierarchies in Extended Superspace , 1996, solv-int/9609008.

[22]  S. Krivonos,et al.  N=4 super KdV hierarchy in N=4 and N=2 superspaces , 1995, hep-th/9510033.

[23]  S. Bellucci,et al.  N = 2 super Boussinesq hierarchy: Lax pairs and conservation laws , 1993 .

[24]  F. Delduc,et al.  N = 4 super KdV equation , 1993, hep-th/9301024.

[25]  E. Ivanov,et al.  Superfield realizations of N=2 super-W3 , 1992 .

[26]  S.Krivonos,et al.  Superfield Realizations of $N=2$ Super-$W_3$ , 1992, hep-th/9204023.

[27]  P. Mathieu,et al.  A new N=2 supersymmetric Korteweg–de Vries equation , 1991 .

[28]  M. Blencowe,et al.  Area-preserving diffeomorphisms and higher-spin algebras , 1990 .

[29]  M. Blencowe A consistent interacting massless higher-spin field theory in D=2+1 , 1989 .

[30]  V. V. Sokolov,et al.  Lie algebras and equations of Korteweg-de Vries type , 1985 .

[31]  I. Gel'fand,et al.  Fractional powers of operators and Hamiltonian systems , 1976 .