Submodular Minimization in the Context of Modern LP and MILP Methods and Solvers

We consider the application of mixed-integer linear programming MILP solvers to the minimization of submodular functions. We evaluate common large-scale linear-programming LP techniques e.g., column generation, row generation, dual stabilization for solving a LP reformulation of the submodular minimization SM problem. We present heuristics based on the LP framework and a MILP solver. We evaluated the performance of our methods on a test bed of min-cut and matroid-intersection problems formulated as SM problems.

[1]  Francis R. Bach,et al.  Learning with Submodular Functions: A Convex Optimization Perspective , 2011, Found. Trends Mach. Learn..

[2]  Hui Lin,et al.  On fast approximate submodular minimization , 2011, NIPS.

[3]  Jon Lee A First Course in Combinatorial Optimization: Appendix: Notation and Terminology , 2004 .

[4]  Satoru Iwata,et al.  A combinatorial strongly polynomial algorithm for minimizing submodular functions , 2001, JACM.

[5]  Samir Elhedhli,et al.  The integration of an interior-point cutting plane method within a branch-and-price algorithm , 2004, Math. Program..

[6]  Claude Lemaréchal,et al.  Comparison of bundle and classical column generation , 2008, Math. Program..

[7]  Satoru Iwata,et al.  Submodular function minimization , 2007, Math. Program..

[8]  László Lovász,et al.  Submodular functions and convexity , 1982, ISMP.

[9]  S. Fujishige,et al.  A Submodular Function Minimization Algorithm Based on the Minimum-Norm Base ⁄ , 2009 .

[10]  Donald Goldfarb,et al.  A computational comparison of the dinic and network simplex methods for maximum flow , 1988 .

[11]  Jacques Desrosiers,et al.  Selected Topics in Column Generation , 2002, Oper. Res..

[12]  Alexander Schrijver,et al.  A Combinatorial Algorithm Minimizing Submodular Functions in Strongly Polynomial Time , 2000, J. Comb. Theory B.

[13]  Martin Grötschel,et al.  The ellipsoid method and its consequences in combinatorial optimization , 1981, Comb..

[14]  Jack Edmonds,et al.  Submodular Functions, Matroids, and Certain Polyhedra , 2001, Combinatorial Optimization.