Nondegenerate Parametric Amplifiers Based on Dispersion-Engineered Josephson-Junction Arrays

Determining the state of a qubit on a timescale much shorter than its relaxation time is an essential requirement for quantum information processing. With the aid of a new type of non-degenerate parametric amplifier, we demonstrate the continuous detection of quantum jumps of a transmon qubit with 90% fidelity in state discrimination. Entirely fabricated with standard two-step optical lithography techniques, this type of parametric amplifier consists of a dispersion engineered Josephson junction (JJ) array. By using long arrays, containing $10^3$ JJs, we can obtain amplification at multiple eigenmodes with frequencies below $10~\mathrm{GHz}$, which is the typical range for qubit readout. Moreover, by introducing a moderate flux tunability of each mode, employing superconducting quantum interference device (SQUID) junctions, a single amplifier device could potentially cover the entire frequency band between 1 and $10~\mathrm{GHz}$.

[1]  Gangqiang Liu,et al.  Josephson Array-Mode Parametric Amplifier , 2019, Physical Review Applied.

[2]  D. Basko,et al.  Photonic-Crystal Josephson Traveling-Wave Parametric Amplifier , 2019, Physical Review X.

[3]  M. Devoret,et al.  Kerr-Free Three-Wave Mixing in Superconducting Quantum Circuits , 2019, Physical Review Applied.

[4]  K. Murch,et al.  Understanding the Saturation Power of Josephson Parametric Amplifiers Made from SQUID Arrays , 2018, Physical Review Applied.

[5]  D. Basko,et al.  Kerr nonlinearity in a superconducting Josephson metamaterial , 2018, Physical Review B.

[6]  M. Devoret,et al.  Optimizing the Nonlinearity and Dissipation of a SNAIL Parametric Amplifier for Dynamic Range , 2018, Physical Review Applied.

[7]  M. Devoret,et al.  Structural Instability of Driven Josephson Circuits Prevented by an Inductive Shunt , 2018, Physical Review Applied.

[8]  M. Devoret,et al.  Escape of a Driven Quantum Josephson Circuit into Unconfined States , 2018, Physical Review Applied.

[9]  W. Wernsdorfer,et al.  Circuit quantum electrodynamics of granular aluminum resonators , 2018, Nature Communications.

[10]  C. K. Andersen,et al.  Rapid High-fidelity Multiplexed Readout of Superconducting Qubits , 2018, Physical Review Applied.

[11]  A. Blais,et al.  Effect of higher-order nonlinearities on amplification and squeezing in Josephson parametric amplifiers , 2017, 1708.00020.

[12]  M. Weides,et al.  An argon ion beam milling process for native AlOx layers enabling coherent superconducting contacts , 2017, 1706.06424.

[13]  I. Pop,et al.  Bistability in a Mesoscopic Josephson Junction Array Resonator , 2017, 1706.04172.

[14]  M. Bal,et al.  Overlap junctions for high coherence superconducting qubits , 2017, 1705.08993.

[15]  M. Hatridge,et al.  Josephson parametric converter saturation and higher order effects , 2017, 1703.04425.

[16]  A. Narla,et al.  3-Wave Mixing Josephson Dipole Element , 2017, 1702.00869.

[17]  Y. Salathe,et al.  Rapid High-Fidelity Single-Shot Dispersive Readout of Superconducting Qubits , 2017, 1701.06933.

[18]  L. Ranzani,et al.  Nonreciprocal Microwave Signal Processing with a Field-Programmable Josephson Amplifier. , 2016, Physical review applied.

[19]  Michel Devoret,et al.  Introduction to parametric amplification of quantum signals with Josephson circuits , 2016, 1605.00539.

[20]  L. Frunzio,et al.  Simultaneous Monitoring of Fluxonium Qubits in a Waveguide , 2016, Physical Review Applied.

[21]  A. Zorin,et al.  Josephson traveling-wave parametric amplifier with three-wave mixing , 2016, 1602.02650.

[22]  A. Fedorov,et al.  Higher-order nonlinear effects in a Josephson parametric amplifier , 2015, 1509.06154.

[23]  I. Siddiqi,et al.  A near–quantum-limited Josephson traveling-wave parametric amplifier , 2015, Science.

[24]  C. Naud,et al.  Kerr coefficients of plasma resonances in Josephson junction chains , 2015, 1505.05845.

[25]  R. J. Schoelkopf,et al.  Reconfigurable Josephson Circulator/Directional Amplifier , 2015, 1503.00209.

[26]  Yvonne Y Gao,et al.  Non-Poissonian quantum jumps of a fluxonium qubit due to quasiparticle excitations. , 2014, Physical review letters.

[27]  P. Bertet,et al.  High-gain weakly nonlinear flux-modulated Josephson parametric amplifier using a SQUID-array , 2014, 1409.5630.

[28]  A. Wallraff,et al.  Quantum-limited amplification and entanglement in coupled nonlinear resonators. , 2014, Physical review letters.

[29]  L. Vale,et al.  Development of a Broadband NbTiN Traveling Wave Parametric Amplifier for MKID Readout , 2014 .

[30]  K. Koshino,et al.  Single-shot readout of a superconducting flux qubit with a flux-driven Josephson parametric amplifier , 2013, 1309.6706.

[31]  R. Barends,et al.  Design and characterization of a lumped element single-ended superconducting microwave parametric amplifier with on-chip flux bias line , 2013, 1308.1376.

[32]  A. Wallraff,et al.  Controlling the dynamic range of a Josephson parametric amplifier , 2013, 1305.6583.

[33]  Luigi Frunzio,et al.  Directional Amplification with a Josephson Circuit , 2013, 1302.4663.

[34]  R. J. Schoelkopf,et al.  Quantum Back-Action of an Individual Variable-Strength Measurement , 2013, Science.

[35]  M. Devoret,et al.  Microwave characterization of Josephson junction arrays: implementing a low loss superinductance. , 2012, Physical review letters.

[36]  L. DiCarlo,et al.  Initialization by measurement of a superconducting quantum bit circuit. , 2012, Physical review letters.

[37]  Luigi Frunzio,et al.  Black-box superconducting circuit quantization. , 2012, Physical review letters.

[38]  M. Devoret,et al.  Widely tunable, nondegenerate three-wave mixing microwave device operating near the quantum limit. , 2012, Physical review letters.

[39]  H. Leduc,et al.  A wideband, low-noise superconducting amplifier with high dynamic range , 2012, Nature Physics.

[40]  Juha Hassel,et al.  Dynamical Casimir effect in a Josephson metamaterial , 2011, Proceedings of the National Academy of Sciences.

[41]  Olivier Buisson,et al.  Junction fabrication by shadow evaporation without a suspended bridge , 2011, Nanotechnology.

[42]  Chad Rigetti,et al.  Josephson amplifier for qubit readout , 2011, 1103.1405.

[43]  R Patil Vijay,et al.  Observation of quantum jumps in a superconducting artificial atom. , 2010, Physical review letters.

[44]  J. Clarke,et al.  Dispersive magnetometry with a quantum limited SQUID parametric amplifier , 2010, 1003.2466.

[45]  S. Girvin,et al.  Phase-preserving amplification near the quantum limit with a Josephson ring modulator , 2009, Nature.

[46]  Denis Vion,et al.  Single-shot qubit readout in circuit quantum electrodynamics , 2009, 1005.5615.

[47]  K. Stannigel,et al.  Parametric amplification with weak-link nonlinearity in superconducting microresonators , 2009, 0906.2744.

[48]  S. Girvin,et al.  Introduction to quantum noise, measurement, and amplification , 2008, 0810.4729.

[49]  Yasunobu Nakamura,et al.  Flux-driven Josephson parametric amplifier , 2008, 0808.1386.

[50]  Jack Lidmar,et al.  Josephson junction transmission lines as tunable artificial crystals , 2008, 0804.2099.

[51]  K. Lehnert,et al.  Widely tunable parametric amplifier based on a superconducting quantum interference device array resonator , 2007, 0706.2373.

[52]  S. Girvin,et al.  Charge-insensitive qubit design derived from the Cooper pair box , 2007, cond-mat/0703002.

[53]  S. Girvin,et al.  Qubit-photon interactions in a cavity: Measurement-induced dephasing and number splitting , 2006, cond-mat/0602322.

[54]  B. Yurke,et al.  Performance of Cavity-Parametric Amplifiers, Employing Kerr Nonlinearites, in the Presence of Two-Photon Loss , 2005, Journal of Lightwave Technology.

[55]  S. Girvin,et al.  Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics , 2004, Nature.

[56]  S. Girvin,et al.  Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation , 2004, cond-mat/0402216.

[57]  R. Fazio,et al.  Quantum phase transitions and vortex dynamics in superconducting networks , 2000, cond-mat/0011152.

[58]  M. Roukes,et al.  A low-noise series-array Josephson junction parametric amplifier , 1996 .

[59]  Clayton R. Paul,et al.  Analysis of Multiconductor Transmission Lines , 1994 .

[60]  Oates,et al.  Nonlinear electrodynamics of superconducting NbN and Nb thin films at microwave frequencies. , 1992, Physical review. B, Condensed matter.

[61]  D. Pozar Microwave Engineering , 1990 .

[62]  Rupp,et al.  Observation of parametric amplification and deamplification in a Josephson parametric amplifier. , 1989, Physical review. A, General physics.

[63]  K. Likharev,et al.  Dynamics of Josephson Junctions and Circuits , 1986 .

[64]  C. Caves Quantum limits on noise in linear amplifiers , 1982 .

[65]  B. Josephson Possible new effects in superconductive tunnelling , 1962 .

[66]  C. Peters,et al.  Generation of optical harmonics , 1961 .

[67]  J. Pankove Superconducting contacts , 1960, IRE Transactions on Electron Devices.

[68]  Norman F. Ramsey,et al.  A Molecular Beam Resonance Method with Separated Oscillating Fields , 1950 .

[69]  Carlos Ramírez,et al.  Bose–Einstein Condensation of Collective Electron Pairs , 2014 .

[70]  W. Marsden I and J , 2012 .

[71]  D. Slichter Quantum Jumps and Measurement Backaction in a Superconducting Qubit , 2011 .

[72]  F. Nori,et al.  Comment on : “ Charge-insensitive qubit design derived from the Cooper pair box ” , 2008 .

[73]  J. Raimond,et al.  Cavity quantum electrodynamics , 1994 .

[74]  Y. Suematsu,et al.  A Parametric Amplifier with , 1963 .

[75]  E. B. Wilson,et al.  PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES. , 1916, Science.