Mining Hierarchies of Correlation Clusters
暂无分享,去创建一个
Elke Achtert | Christian Böhm | Peer Kröger | Arthur Zimek | C. Böhm | Elke Achtert | Peer Kröger | Arthur Zimek
[1] Philip S. Yu,et al. /spl delta/-clusters: capturing subspace correlation in a large data set , 2002, Proceedings 18th International Conference on Data Engineering.
[2] Philip S. Yu,et al. Fast algorithms for projected clustering , 1999, SIGMOD '99.
[3] Christian Böhm,et al. Density connected clustering with local subspace preferences , 2004, Fourth IEEE International Conference on Data Mining (ICDM'04).
[4] J. Hartigan. Direct Clustering of a Data Matrix , 1972 .
[5] T. M. Murali,et al. A Monte Carlo algorithm for fast projective clustering , 2002, SIGMOD '02.
[6] Philip S. Yu,et al. Clustering by pattern similarity in large data sets , 2002, SIGMOD '02.
[7] Dimitrios Gunopulos,et al. Automatic subspace clustering of high dimensional data for data mining applications , 1998, SIGMOD '98.
[8] Christian Böhm,et al. Computing Clusters of Correlation Connected objects , 2004, SIGMOD '04.
[9] Anthony K. H. Tung,et al. CURLER: finding and visualizing nonlinear correlation clusters , 2005, SIGMOD '05.
[10] Hans-Peter Kriegel,et al. Density-Connected Subspace Clustering for High-Dimensional Data , 2004, SDM.
[11] Philip S. Yu,et al. Finding generalized projected clusters in high dimensional spaces , 2000, SIGMOD '00.
[12] George M. Church,et al. Biclustering of Expression Data , 2000, ISMB.
[13] Wei Wang,et al. OP-cluster: clustering by tendency in high dimensional space , 2003, Third IEEE International Conference on Data Mining.
[14] Hans-Peter Kriegel,et al. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.
[15] Philip S. Yu,et al. MaPle: a fast algorithm for maximal pattern-based clustering , 2003, Third IEEE International Conference on Data Mining.
[16] Philip S. Yu,et al. Finding generalized projected clusters in high dimensional spaces , 2000, SIGMOD 2000.
[17] Hans-Peter Kriegel,et al. OPTICS: ordering points to identify the clustering structure , 1999, SIGMOD '99.