Radiative force model performance for TOPEX/Poseidon precision orbit determination
暂无分享,去创建一个
The TOPEX/Poseidon spacecraft was launched on August 10, 1992 to study the Earth's oceans. To achieve maximum benefit from the altimetric data collected, mission requirements dictate that TOPEX/Poseidon's orbit must be computed at an unprecedented level of accuracy. In order to satisfy these requirements, a model which accounts for the satellite's complex geometry, attitude, and surface properties has been developed. This `box-wing' representation treats the spacecraft as the combination of flat plates arranged in the shape of a box and a connecetd solar array. The nonconservative forces acting on each of the eight surfaces are computed independently, yielding vector accelerations which are summed to compute the total aggregate effect on the satellite center-of-mass. Parameters associated with each flat plate were derived from a finite element analysis of the spacecraft. Certain parameters can be inferred from tracking data and have been adjusted to obtain a better representation of the satellite acceleration history. Changes in the nominal mission profile and the presence of an `anomalistic' force have complicated this tuning process. Model performance, parameter sensitivities, and the `anomalistic' force will be discussed.