Canonical Functions: a proof via topological dynamics

Canonical functions are a powerful concept with numerous applications in the study of groups, monoids, and clones on countable structures with Ramsey-type properties. In this short note, we present a proof of the existence of canonical functions in certain sets using topological dynamics, providing a shorter alternative to the original combinatorial argument. We moreover present equivalent algebraic characterisations of canonicity.

[1]  Manuel Bodirsky,et al.  Equivalence Constraint Satisfaction Problems , 2012, CSL.

[2]  Michael Pinsker,et al.  Schaefer's Theorem for Graphs , 2015, J. ACM.

[3]  Michael Pinsker,et al.  Decidability of Definability , 2010, 2011 IEEE 26th Annual Symposium on Logic in Computer Science.

[4]  Peter Jonsson,et al.  The Reducts of the homogeneous Binary Branching C-Relation , 2016, J. Symb. Log..

[5]  V. Bergelson Ergodic Ramsey theory: a dynamical approach to static theorems , 2006 .

[6]  Michael Pinsker,et al.  Reducts of Ramsey structures , 2011, AMS-ASL Joint Special Session.

[7]  Michael Pinsker,et al.  Topological Birkhoff , 2012, ArXiv.

[8]  Slawomir Lasota,et al.  Homomorphism Problems for First-Order Definable Structures , 2016, FSTTCS.

[9]  A. Kechris Dynamics of non-archimedean Polish groups , 2012 .

[10]  Michael Pinsker,et al.  Reducts of the random partial order , 2011, 1111.7109.

[11]  András Pongrácz Reducts of the Henson graphs with a constant , 2017, Ann. Pure Appl. Log..

[12]  Michael Pinsker,et al.  Permutations on the Random Permutation , 2015, Electron. J. Comb..

[13]  Wilfrid Hodges,et al.  A Shorter Model Theory , 1997 .

[14]  V. Pestov,et al.  Fraïssé Limits, Ramsey Theory, and topological dynamics of automorphism groups , 2003 .

[15]  Libor Barto,et al.  The wonderland of reflections , 2015, Israel Journal of Mathematics.

[16]  Lovkush Agarwal,et al.  Reducts of the generic digraph , 2014, Annals of Pure and Applied Logic.

[17]  Michael Pinsker,et al.  PROJECTIVE CLONE HOMOMORPHISMS , 2014, The Journal of Symbolic Logic.

[18]  A uniform Birkhoff theorem , 2015, 1510.03166.

[19]  Barnaby Martin,et al.  Constraint satisfaction problems for reducts of homogeneous graphs , 2016, ICALP.

[20]  M. Kompatscher,et al.  $2^{\aleph_0}$ pairwise non-isomorphic maximal-closed subgroups of Sym$(\mathbb{N})$ via the classification of the reducts of the Henson digraphs , 2015, 1509.07674.

[21]  Libor Barto,et al.  Equations in oligomorphic clones and the Constraint Satisfaction Problem for $ω$-categorical structures , 2016, J. Math. Log..

[22]  Peter Jonsson,et al.  The Complexity of Phylogeny Constraint Satisfaction , 2016, STACS.

[23]  Peter Jonsson,et al.  The Complexity of Phylogeny Constraint Satisfaction Problems , 2015, ACM Trans. Comput. Log..

[24]  Michael Pinsker,et al.  The 42 reducts of the random ordered graph , 2013, 1309.2165.

[25]  Libor Barto,et al.  The equivalence of two dichotomy conjectures for infinite domain constraint satisfaction problems , 2017, 2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).

[26]  Michael Pinsker,et al.  Minimal functions on the random graph , 2010 .

[27]  Libor Barto,et al.  The algebraic dichotomy conjecture for infinite domain Constraint Satisfaction Problems , 2016, 2016 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).

[28]  Manuel Bodirsky,et al.  Reducts of finitely bounded homogeneous structures, and lifting tractability from finite-domain constraint satisfaction , 2016, 2016 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).

[29]  Szymon Torunczyk,et al.  Locally Finite Constraint Satisfaction Problems , 2015, 2015 30th Annual ACM/IEEE Symposium on Logic in Computer Science.